Step | Hyp | Ref
| Expression |
1 | | xpsval.t |
. 2
β’ π = (π
Γs π) |
2 | | xpsval.x |
. 2
β’ π = (Baseβπ
) |
3 | | xpsval.y |
. 2
β’ π = (Baseβπ) |
4 | | xpsval.1 |
. 2
β’ (π β π
β π) |
5 | | xpsval.2 |
. 2
β’ (π β π β π) |
6 | | xpsadd.3 |
. 2
β’ (π β π΄ β π) |
7 | | xpsadd.4 |
. 2
β’ (π β π΅ β π) |
8 | | xpsadd.5 |
. 2
β’ (π β πΆ β π) |
9 | | xpsadd.6 |
. 2
β’ (π β π· β π) |
10 | | xpsadd.7 |
. 2
β’ (π β (π΄ Β· πΆ) β π) |
11 | | xpsadd.8 |
. 2
β’ (π β (π΅ Γ π·) β π) |
12 | | xpsadd.m |
. 2
β’ Β· =
(+gβπ
) |
13 | | xpsadd.n |
. 2
β’ Γ =
(+gβπ) |
14 | | xpsadd.p |
. 2
β’ β =
(+gβπ) |
15 | | eqid 2732 |
. 2
β’ (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) = (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) |
16 | | eqid 2732 |
. 2
β’
((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}) = ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}) |
17 | 15 | xpsff1o2 17511 |
. . . . 5
β’ (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):(π Γ π)β1-1-ontoβran
(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) |
18 | | f1ocnv 6842 |
. . . . 5
β’ ((π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):(π Γ π)β1-1-ontoβran
(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) β β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π)) |
19 | 17, 18 | mp1i 13 |
. . . 4
β’ (π β β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π)) |
20 | | f1ofo 6837 |
. . . 4
β’ (β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π) β β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})βontoβ(π Γ π)) |
21 | 19, 20 | syl 17 |
. . 3
β’ (π β β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})βontoβ(π Γ π)) |
22 | 19 | f1ocpbl 17467 |
. . 3
β’ ((π β§ (π β ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) β§ π β ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})) β§ (π β ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) β§ π β ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}))) β (((β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})βπ) = (β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})βπ) β§ (β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})βπ) = (β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})βπ)) β (β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})β(π(+gβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))π)) = (β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})β(π(+gβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))π)))) |
23 | | eqid 2732 |
. . . 4
β’
(Scalarβπ
) =
(Scalarβπ
) |
24 | 1, 2, 3, 4, 5, 15,
23, 16 | xpsval 17512 |
. . 3
β’ (π β π = (β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) |
25 | 1, 2, 3, 4, 5, 15,
23, 16 | xpsrnbas 17513 |
. . 3
β’ (π β ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) =
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) |
26 | | ovexd 7440 |
. . 3
β’ (π β ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}) β
V) |
27 | | eqid 2732 |
. . 3
β’
(+gβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) =
(+gβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) |
28 | 21, 22, 24, 25, 26, 27, 14 | imasaddval 17474 |
. 2
β’ ((π β§ {β¨β
, π΄β©, β¨1o,
π΅β©} β ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) β§ {β¨β
,
πΆβ©,
β¨1o, π·β©} β ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})) β ((β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})β{β¨β
,
π΄β©,
β¨1o, π΅β©}) β (β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})β{β¨β
,
πΆβ©,
β¨1o, π·β©})) = (β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})β({β¨β
,
π΄β©,
β¨1o, π΅β©}
(+gβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})){β¨β
, πΆβ©, β¨1o,
π·β©}))) |
29 | | eqid 2732 |
. . 3
β’
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) =
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) |
30 | | fvexd 6903 |
. . 3
β’
(({β¨β
, π
β©, β¨1o, πβ©} Fn 2o β§
{β¨β
, π΄β©,
β¨1o, π΅β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) β§ {β¨β
,
πΆβ©,
β¨1o, π·β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) β
(Scalarβπ
) β
V) |
31 | | 2on 8476 |
. . . 4
β’
2o β On |
32 | 31 | a1i 11 |
. . 3
β’
(({β¨β
, π
β©, β¨1o, πβ©} Fn 2o β§
{β¨β
, π΄β©,
β¨1o, π΅β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) β§ {β¨β
,
πΆβ©,
β¨1o, π·β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) β 2o
β On) |
33 | | simp1 1136 |
. . 3
β’
(({β¨β
, π
β©, β¨1o, πβ©} Fn 2o β§
{β¨β
, π΄β©,
β¨1o, π΅β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) β§ {β¨β
,
πΆβ©,
β¨1o, π·β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) β
{β¨β
, π
β©,
β¨1o, πβ©} Fn 2o) |
34 | | simp2 1137 |
. . 3
β’
(({β¨β
, π
β©, β¨1o, πβ©} Fn 2o β§
{β¨β
, π΄β©,
β¨1o, π΅β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) β§ {β¨β
,
πΆβ©,
β¨1o, π·β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) β
{β¨β
, π΄β©,
β¨1o, π΅β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) |
35 | | simp3 1138 |
. . 3
β’
(({β¨β
, π
β©, β¨1o, πβ©} Fn 2o β§
{β¨β
, π΄β©,
β¨1o, π΅β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) β§ {β¨β
,
πΆβ©,
β¨1o, π·β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) β
{β¨β
, πΆβ©,
β¨1o, π·β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) |
36 | 16, 29, 30, 32, 33, 34, 35, 27 | prdsplusgval 17415 |
. 2
β’
(({β¨β
, π
β©, β¨1o, πβ©} Fn 2o β§
{β¨β
, π΄β©,
β¨1o, π΅β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) β§ {β¨β
,
πΆβ©,
β¨1o, π·β©} β
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) β
({β¨β
, π΄β©,
β¨1o, π΅β©}
(+gβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})){β¨β
, πΆβ©, β¨1o,
π·β©}) = (π β 2o β¦
(({β¨β
, π΄β©,
β¨1o, π΅β©}βπ)(+gβ({β¨β
, π
β©, β¨1o,
πβ©}βπ))({β¨β
, πΆβ©, β¨1o,
π·β©}βπ)))) |
37 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 28, 36 | xpsaddlem 17515 |
1
β’ (π β (β¨π΄, π΅β© β β¨πΆ, π·β©) = β¨(π΄ Β· πΆ), (π΅ Γ π·)β©) |