MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsadd Structured version   Visualization version   GIF version

Theorem xpsadd 17561
Description: Value of the addition operation in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 Γ—s 𝑆)
xpsval.x 𝑋 = (Baseβ€˜π‘…)
xpsval.y π‘Œ = (Baseβ€˜π‘†)
xpsval.1 (πœ‘ β†’ 𝑅 ∈ 𝑉)
xpsval.2 (πœ‘ β†’ 𝑆 ∈ π‘Š)
xpsadd.3 (πœ‘ β†’ 𝐴 ∈ 𝑋)
xpsadd.4 (πœ‘ β†’ 𝐡 ∈ π‘Œ)
xpsadd.5 (πœ‘ β†’ 𝐢 ∈ 𝑋)
xpsadd.6 (πœ‘ β†’ 𝐷 ∈ π‘Œ)
xpsadd.7 (πœ‘ β†’ (𝐴 Β· 𝐢) ∈ 𝑋)
xpsadd.8 (πœ‘ β†’ (𝐡 Γ— 𝐷) ∈ π‘Œ)
xpsadd.m Β· = (+gβ€˜π‘…)
xpsadd.n Γ— = (+gβ€˜π‘†)
xpsadd.p βˆ™ = (+gβ€˜π‘‡)
Assertion
Ref Expression
xpsadd (πœ‘ β†’ (⟨𝐴, 𝐡⟩ βˆ™ ⟨𝐢, 𝐷⟩) = ⟨(𝐴 Β· 𝐢), (𝐡 Γ— 𝐷)⟩)

Proof of Theorem xpsadd
Dummy variables 𝑦 π‘˜ 𝑐 π‘₯ 𝑑 π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsval.t . 2 𝑇 = (𝑅 Γ—s 𝑆)
2 xpsval.x . 2 𝑋 = (Baseβ€˜π‘…)
3 xpsval.y . 2 π‘Œ = (Baseβ€˜π‘†)
4 xpsval.1 . 2 (πœ‘ β†’ 𝑅 ∈ 𝑉)
5 xpsval.2 . 2 (πœ‘ β†’ 𝑆 ∈ π‘Š)
6 xpsadd.3 . 2 (πœ‘ β†’ 𝐴 ∈ 𝑋)
7 xpsadd.4 . 2 (πœ‘ β†’ 𝐡 ∈ π‘Œ)
8 xpsadd.5 . 2 (πœ‘ β†’ 𝐢 ∈ 𝑋)
9 xpsadd.6 . 2 (πœ‘ β†’ 𝐷 ∈ π‘Œ)
10 xpsadd.7 . 2 (πœ‘ β†’ (𝐴 Β· 𝐢) ∈ 𝑋)
11 xpsadd.8 . 2 (πœ‘ β†’ (𝐡 Γ— 𝐷) ∈ π‘Œ)
12 xpsadd.m . 2 Β· = (+gβ€˜π‘…)
13 xpsadd.n . 2 Γ— = (+gβ€˜π‘†)
14 xpsadd.p . 2 βˆ™ = (+gβ€˜π‘‡)
15 eqid 2727 . 2 (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
16 eqid 2727 . 2 ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}) = ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})
1715xpsff1o2 17556 . . . . 5 (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):(𝑋 Γ— π‘Œ)–1-1-ontoβ†’ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
18 f1ocnv 6854 . . . . 5 ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):(𝑋 Γ— π‘Œ)–1-1-ontoβ†’ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β†’ β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–1-1-ontoβ†’(𝑋 Γ— π‘Œ))
1917, 18mp1i 13 . . . 4 (πœ‘ β†’ β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–1-1-ontoβ†’(𝑋 Γ— π‘Œ))
20 f1ofo 6849 . . . 4 (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–1-1-ontoβ†’(𝑋 Γ— π‘Œ) β†’ β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–ontoβ†’(𝑋 Γ— π‘Œ))
2119, 20syl 17 . . 3 (πœ‘ β†’ β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–ontoβ†’(𝑋 Γ— π‘Œ))
2219f1ocpbl 17512 . . 3 ((πœ‘ ∧ (π‘Ž ∈ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) ∧ 𝑏 ∈ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})) ∧ (𝑐 ∈ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) ∧ 𝑑 ∈ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))) β†’ (((β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜π‘Ž) = (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜π‘) ∧ (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜π‘) = (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜π‘‘)) β†’ (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜(π‘Ž(+gβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))𝑏)) = (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜(𝑐(+gβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))𝑑))))
23 eqid 2727 . . . 4 (Scalarβ€˜π‘…) = (Scalarβ€˜π‘…)
241, 2, 3, 4, 5, 15, 23, 16xpsval 17557 . . 3 (πœ‘ β†’ 𝑇 = (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β€œs ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
251, 2, 3, 4, 5, 15, 23, 16xpsrnbas 17558 . . 3 (πœ‘ β†’ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
26 ovexd 7459 . . 3 (πœ‘ β†’ ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}) ∈ V)
27 eqid 2727 . . 3 (+gβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) = (+gβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))
2821, 22, 24, 25, 26, 27, 14imasaddval 17519 . 2 ((πœ‘ ∧ {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} ∈ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) ∧ {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩} ∈ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})) β†’ ((β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}) βˆ™ (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜{βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩})) = (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})β€˜({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} (+gβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})){βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩})))
29 eqid 2727 . . 3 (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) = (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))
30 fvexd 6915 . . 3 (({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} Fn 2o ∧ {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) ∧ {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))) β†’ (Scalarβ€˜π‘…) ∈ V)
31 2on 8505 . . . 4 2o ∈ On
3231a1i 11 . . 3 (({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} Fn 2o ∧ {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) ∧ {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))) β†’ 2o ∈ On)
33 simp1 1133 . . 3 (({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} Fn 2o ∧ {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) ∧ {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))) β†’ {βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} Fn 2o)
34 simp2 1134 . . 3 (({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} Fn 2o ∧ {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) ∧ {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))) β†’ {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
35 simp3 1135 . . 3 (({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} Fn 2o ∧ {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) ∧ {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))) β†’ {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
3616, 29, 30, 32, 33, 34, 35, 27prdsplusgval 17460 . 2 (({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} Fn 2o ∧ {βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) ∧ {βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩} ∈ (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))) β†’ ({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩} (+gβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})){βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}) = (π‘˜ ∈ 2o ↦ (({βŸ¨βˆ…, 𝐴⟩, ⟨1o, 𝐡⟩}β€˜π‘˜)(+gβ€˜({βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}β€˜π‘˜))({βŸ¨βˆ…, 𝐢⟩, ⟨1o, 𝐷⟩}β€˜π‘˜))))
371, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 28, 36xpsaddlem 17560 1 (πœ‘ β†’ (⟨𝐴, 𝐡⟩ βˆ™ ⟨𝐢, 𝐷⟩) = ⟨(𝐴 Β· 𝐢), (𝐡 Γ— 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3471  βˆ…c0 4324  {cpr 4632  βŸ¨cop 4636   Γ— cxp 5678  β—‘ccnv 5679  ran crn 5681  Oncon0 6372   Fn wfn 6546  β€“ontoβ†’wfo 6549  β€“1-1-ontoβ†’wf1o 6550  β€˜cfv 6551  (class class class)co 7424   ∈ cmpo 7426  1oc1o 8484  2oc2o 8485  Basecbs 17185  +gcplusg 17238  Scalarcsca 17241  Xscprds 17432   Γ—s cxps 17493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-map 8851  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-fz 13523  df-struct 17121  df-slot 17156  df-ndx 17168  df-base 17186  df-plusg 17251  df-mulr 17252  df-sca 17254  df-vsca 17255  df-ip 17256  df-tset 17257  df-ple 17258  df-ds 17260  df-hom 17262  df-cco 17263  df-prds 17434  df-imas 17495  df-xps 17497
This theorem is referenced by:  xpsmnd0  18740  xpsinv  19021  xpsgrpsub  19022  rngqiprngghm  21194  pzriprnglem4  21415  pzriprnglem10  21421  pzriprng1ALT  21427
  Copyright terms: Public domain W3C validator