Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmul Structured version   Visualization version   GIF version

Theorem xpsmul 16911
 Description: Value of the multiplication operation in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 ×s 𝑆)
xpsval.x 𝑋 = (Base‘𝑅)
xpsval.y 𝑌 = (Base‘𝑆)
xpsval.1 (𝜑𝑅𝑉)
xpsval.2 (𝜑𝑆𝑊)
xpsadd.7 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
xpsadd.8 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
xpsmul.m · = (.r𝑅)
xpsmul.n × = (.r𝑆)
xpsmul.p = (.r𝑇)
Assertion
Ref Expression
xpsmul (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)

Proof of Theorem xpsmul
Dummy variables 𝑦 𝑘 𝑐 𝑥 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsval.t . 2 𝑇 = (𝑅 ×s 𝑆)
2 xpsval.x . 2 𝑋 = (Base‘𝑅)
3 xpsval.y . 2 𝑌 = (Base‘𝑆)
4 xpsval.1 . 2 (𝜑𝑅𝑉)
5 xpsval.2 . 2 (𝜑𝑆𝑊)
6 xpsadd.3 . 2 (𝜑𝐴𝑋)
7 xpsadd.4 . 2 (𝜑𝐵𝑌)
8 xpsadd.5 . 2 (𝜑𝐶𝑋)
9 xpsadd.6 . 2 (𝜑𝐷𝑌)
10 xpsadd.7 . 2 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
11 xpsadd.8 . 2 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
12 xpsmul.m . 2 · = (.r𝑅)
13 xpsmul.n . 2 × = (.r𝑆)
14 xpsmul.p . 2 = (.r𝑇)
15 eqid 2758 . 2 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
16 eqid 2758 . 2 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
1715xpsff1o2 16905 . . . . 5 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
18 f1ocnv 6618 . . . . 5 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
1917, 18mp1i 13 . . . 4 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
20 f1ofo 6613 . . . 4 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
2119, 20syl 17 . . 3 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
2219f1ocpbl 16861 . . 3 ((𝜑 ∧ (𝑎 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ 𝑏 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) ∧ (𝑐 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ 𝑑 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) → ((((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑎) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑐) ∧ ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑏) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑑)) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝑎(.r‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑏)) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝑐(.r‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑑))))
23 eqid 2758 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
241, 2, 3, 4, 5, 15, 23, 16xpsval 16906 . . 3 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
251, 2, 3, 4, 5, 15, 23, 16xpsrnbas 16907 . . 3 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
26 ovexd 7190 . . 3 (𝜑 → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
27 eqid 2758 . . 3 (.r‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (.r‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
2821, 22, 24, 25, 26, 27, 14imasmulval 16871 . 2 ((𝜑 ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (.r‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})))
29 eqid 2758 . . 3 (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
30 fvexd 6677 . . 3 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))) → (Scalar‘𝑅) ∈ V)
31 2on 8126 . . . 4 2o ∈ On
3231a1i 11 . . 3 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))) → 2o ∈ On)
33 simp1 1133 . . 3 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
34 simp2 1134 . . 3 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
35 simp3 1135 . . 3 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))) → {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
3616, 29, 30, 32, 33, 34, 35, 27prdsmulrval 16811 . 2 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (.r‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(.r‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))))
371, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 28, 36xpsaddlem 16909 1 (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Vcvv 3409  ∅c0 4227  {cpr 4527  ⟨cop 4531   × cxp 5525  ◡ccnv 5526  ran crn 5528  Oncon0 6173   Fn wfn 6334  –onto→wfo 6337  –1-1-onto→wf1o 6338  ‘cfv 6339  (class class class)co 7155   ∈ cmpo 7157  1oc1o 8110  2oc2o 8111  Basecbs 16546  .rcmulr 16629  Scalarcsca 16631  Xscprds 16782   ×s cxps 16842 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-er 8304  df-map 8423  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-inf 8945  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-fz 12945  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-plusg 16641  df-mulr 16642  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-hom 16652  df-cco 16653  df-prds 16784  df-imas 16844  df-xps 16846 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator