Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imasmndf1 | Structured version Visualization version GIF version |
Description: The image of a monoid under an injection is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
imasmndf1.u | ⊢ 𝑈 = (𝐹 “s 𝑅) |
imasmndf1.v | ⊢ 𝑉 = (Base‘𝑅) |
Ref | Expression |
---|---|
imasmndf1 | ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Mnd) → 𝑈 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasmndf1.u | . . . 4 ⊢ 𝑈 = (𝐹 “s 𝑅) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Mnd) → 𝑈 = (𝐹 “s 𝑅)) |
3 | imasmndf1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑅) | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Mnd) → 𝑉 = (Base‘𝑅)) |
5 | eqid 2739 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
6 | f1f1orn 6708 | . . . . 5 ⊢ (𝐹:𝑉–1-1→𝐵 → 𝐹:𝑉–1-1-onto→ran 𝐹) | |
7 | 6 | adantr 484 | . . . 4 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Mnd) → 𝐹:𝑉–1-1-onto→ran 𝐹) |
8 | f1ofo 6704 | . . . 4 ⊢ (𝐹:𝑉–1-1-onto→ran 𝐹 → 𝐹:𝑉–onto→ran 𝐹) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Mnd) → 𝐹:𝑉–onto→ran 𝐹) |
10 | 7 | f1ocpbl 17128 | . . 3 ⊢ (((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Mnd) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑝(+g‘𝑅)𝑞)))) |
11 | simpr 488 | . . 3 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Mnd) → 𝑅 ∈ Mnd) | |
12 | eqid 2739 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
13 | 2, 4, 5, 9, 10, 11, 12 | imasmnd 18313 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Mnd) → (𝑈 ∈ Mnd ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑈))) |
14 | 13 | simpld 498 | 1 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Mnd) → 𝑈 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ran crn 5580 –1-1→wf1 6412 –onto→wfo 6413 –1-1-onto→wf1o 6414 ‘cfv 6415 (class class class)co 7252 Basecbs 16815 +gcplusg 16863 0gc0g 17042 “s cimas 17107 Mndcmnd 18275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-sup 9106 df-inf 9107 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-dec 12342 df-uz 12487 df-fz 13144 df-struct 16751 df-slot 16786 df-ndx 16798 df-base 16816 df-plusg 16876 df-mulr 16877 df-sca 16879 df-vsca 16880 df-ip 16881 df-tset 16882 df-ple 16883 df-ds 16885 df-0g 17044 df-imas 17111 df-mgm 18216 df-sgrp 18265 df-mnd 18276 |
This theorem is referenced by: xpsmnd 18315 |
Copyright terms: Public domain | W3C validator |