| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f2ndf | Structured version Visualization version GIF version | ||
| Description: The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
| Ref | Expression |
|---|---|
| f2ndf | ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f2ndres 7996 | . . 3 ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 | |
| 2 | fssxp 6718 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
| 3 | fssres 6729 | . . 3 ⊢ (((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹⟶𝐵) | |
| 4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹⟶𝐵) |
| 5 | 2 | resabs1d 5982 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹) = (2nd ↾ 𝐹)) |
| 6 | 5 | eqcomd 2736 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹) = ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹)) |
| 7 | 6 | feq1d 6673 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((2nd ↾ 𝐹):𝐹⟶𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹⟶𝐵)) |
| 8 | 4, 7 | mpbird 257 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 × cxp 5639 ↾ cres 5643 ⟶wf 6510 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-2nd 7972 |
| This theorem is referenced by: fo2ndf 8103 f1o2ndf1 8104 |
| Copyright terms: Public domain | W3C validator |