| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f2ndf | Structured version Visualization version GIF version | ||
| Description: The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
| Ref | Expression |
|---|---|
| f2ndf | ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f2ndres 7946 | . . 3 ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 | |
| 2 | fssxp 6678 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
| 3 | fssres 6689 | . . 3 ⊢ (((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹⟶𝐵) | |
| 4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹⟶𝐵) |
| 5 | 2 | resabs1d 5957 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹) = (2nd ↾ 𝐹)) |
| 6 | 5 | eqcomd 2737 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹) = ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹)) |
| 7 | 6 | feq1d 6633 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((2nd ↾ 𝐹):𝐹⟶𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹⟶𝐵)) |
| 8 | 4, 7 | mpbird 257 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3902 × cxp 5614 ↾ cres 5618 ⟶wf 6477 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-f 6485 df-2nd 7922 |
| This theorem is referenced by: fo2ndf 8051 f1o2ndf1 8052 |
| Copyright terms: Public domain | W3C validator |