MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f2ndf Structured version   Visualization version   GIF version

Theorem f2ndf 8099
Description: The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
f2ndf (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)

Proof of Theorem f2ndf
StepHypRef Expression
1 f2ndres 7993 . . 3 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
2 fssxp 6715 . . 3 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
3 fssres 6726 . . 3 (((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵𝐹 ⊆ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹𝐵)
41, 2, 3sylancr 587 . 2 (𝐹:𝐴𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹𝐵)
52resabs1d 5979 . . . 4 (𝐹:𝐴𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹) = (2nd𝐹))
65eqcomd 2735 . . 3 (𝐹:𝐴𝐵 → (2nd𝐹) = ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹))
76feq1d 6670 . 2 (𝐹:𝐴𝐵 → ((2nd𝐹):𝐹𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹𝐵))
84, 7mpbird 257 1 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3914   × cxp 5636  cres 5640  wf 6507  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-2nd 7969
This theorem is referenced by:  fo2ndf  8100  f1o2ndf1  8101
  Copyright terms: Public domain W3C validator