MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f2ndf Structured version   Visualization version   GIF version

Theorem f2ndf 8161
Description: The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
f2ndf (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)

Proof of Theorem f2ndf
StepHypRef Expression
1 f2ndres 8055 . . 3 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
2 fssxp 6775 . . 3 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
3 fssres 6787 . . 3 (((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵𝐹 ⊆ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹𝐵)
41, 2, 3sylancr 586 . 2 (𝐹:𝐴𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹𝐵)
52resabs1d 6037 . . . 4 (𝐹:𝐴𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹) = (2nd𝐹))
65eqcomd 2746 . . 3 (𝐹:𝐴𝐵 → (2nd𝐹) = ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹))
76feq1d 6732 . 2 (𝐹:𝐴𝐵 → ((2nd𝐹):𝐹𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹𝐵))
84, 7mpbird 257 1 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3976   × cxp 5698  cres 5702  wf 6569  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-2nd 8031
This theorem is referenced by:  fo2ndf  8162  f1o2ndf1  8163
  Copyright terms: Public domain W3C validator