![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f2ndf | Structured version Visualization version GIF version |
Description: The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
Ref | Expression |
---|---|
f2ndf | ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f2ndres 7519 | . . 3 ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 | |
2 | fssxp 6357 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
3 | fssres 6367 | . . 3 ⊢ (((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹⟶𝐵) | |
4 | 1, 2, 3 | sylancr 578 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹⟶𝐵) |
5 | 2 | resabs1d 5723 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹) = (2nd ↾ 𝐹)) |
6 | 5 | eqcomd 2778 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹) = ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹)) |
7 | 6 | feq1d 6323 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((2nd ↾ 𝐹):𝐹⟶𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹⟶𝐵)) |
8 | 4, 7 | mpbird 249 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3825 × cxp 5398 ↾ cres 5402 ⟶wf 6178 2nd c2nd 7493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-fv 6190 df-2nd 7495 |
This theorem is referenced by: fo2ndf 7615 f1o2ndf1 7616 |
Copyright terms: Public domain | W3C validator |