MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f2ndf Structured version   Visualization version   GIF version

Theorem f2ndf 7614
Description: The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
f2ndf (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)

Proof of Theorem f2ndf
StepHypRef Expression
1 f2ndres 7519 . . 3 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
2 fssxp 6357 . . 3 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
3 fssres 6367 . . 3 (((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵𝐹 ⊆ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹𝐵)
41, 2, 3sylancr 578 . 2 (𝐹:𝐴𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹𝐵)
52resabs1d 5723 . . . 4 (𝐹:𝐴𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹) = (2nd𝐹))
65eqcomd 2778 . . 3 (𝐹:𝐴𝐵 → (2nd𝐹) = ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹))
76feq1d 6323 . 2 (𝐹:𝐴𝐵 → ((2nd𝐹):𝐹𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹𝐵))
84, 7mpbird 249 1 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3825   × cxp 5398  cres 5402  wf 6178  2nd c2nd 7493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-fv 6190  df-2nd 7495
This theorem is referenced by:  fo2ndf  7615  f1o2ndf1  7616
  Copyright terms: Public domain W3C validator