| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funconstss | Structured version Visualization version GIF version | ||
| Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.) |
| Ref | Expression |
|---|---|
| funconstss | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimass4 6892 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ {𝐵} ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵})) | |
| 2 | fvex 6841 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
| 3 | 2 | elsn 4590 | . . . 4 ⊢ ((𝐹‘𝑥) ∈ {𝐵} ↔ (𝐹‘𝑥) = 𝐵) |
| 4 | 3 | ralbii 3079 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ {𝐵} ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) |
| 5 | 1, 4 | bitr2di 288 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ (𝐹 “ 𝐴) ⊆ {𝐵})) |
| 6 | funimass3 6993 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ {𝐵} ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
| 7 | 5, 6 | bitrd 279 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 {csn 4575 ◡ccnv 5618 dom cdm 5619 “ cima 5622 Fun wfun 6480 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 |
| This theorem is referenced by: fconst3 7153 ipasslem8 30819 |
| Copyright terms: Public domain | W3C validator |