MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funconstss Structured version   Visualization version   GIF version

Theorem funconstss 6989
Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
funconstss ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem funconstss
StepHypRef Expression
1 funimass4 6886 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ {𝐵} ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵}))
2 fvex 6835 . . . . 5 (𝐹𝑥) ∈ V
32elsn 4591 . . . 4 ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵)
43ralbii 3078 . . 3 (∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵} ↔ ∀𝑥𝐴 (𝐹𝑥) = 𝐵)
51, 4bitr2di 288 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵 ↔ (𝐹𝐴) ⊆ {𝐵}))
6 funimass3 6987 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ {𝐵} ↔ 𝐴 ⊆ (𝐹 “ {𝐵})))
75, 6bitrd 279 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3902  {csn 4576  ccnv 5615  dom cdm 5616  cima 5619  Fun wfun 6475  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  fconst3  7147  ipasslem8  30812
  Copyright terms: Public domain W3C validator