MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funconstss Structured version   Visualization version   GIF version

Theorem funconstss 7075
Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
funconstss ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem funconstss
StepHypRef Expression
1 funimass4 6972 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ {𝐵} ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵}))
2 fvex 6919 . . . . 5 (𝐹𝑥) ∈ V
32elsn 4645 . . . 4 ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵)
43ralbii 3090 . . 3 (∀𝑥𝐴 (𝐹𝑥) ∈ {𝐵} ↔ ∀𝑥𝐴 (𝐹𝑥) = 𝐵)
51, 4bitr2di 288 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵 ↔ (𝐹𝐴) ⊆ {𝐵}))
6 funimass3 7073 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ {𝐵} ↔ 𝐴 ⊆ (𝐹 “ {𝐵})))
75, 6bitrd 279 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wss 3962  {csn 4630  ccnv 5687  dom cdm 5688  cima 5691  Fun wfun 6556  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-fv 6570
This theorem is referenced by:  fconst3  7232  ipasslem8  30865
  Copyright terms: Public domain W3C validator