![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > offvalfv | Structured version Visualization version GIF version |
Description: The function operation expressed as a mapping with function values. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
offvalfv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offvalfv.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offvalfv.g | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
Ref | Expression |
---|---|
offvalfv | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offvalfv.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | offvalfv.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
3 | fnfvelrn 7107 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ran 𝐹) | |
4 | 2, 3 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ran 𝐹) |
5 | offvalfv.g | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
6 | fnfvelrn 7107 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ran 𝐺) | |
7 | 5, 6 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ran 𝐺) |
8 | dffn5 6974 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
9 | 2, 8 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
10 | dffn5 6974 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
11 | 5, 10 | sylib 218 | . 2 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
12 | 1, 4, 7, 9, 11 | offval2 7724 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5234 ran crn 5694 Fn wfn 6564 ‘cfv 6569 (class class class)co 7438 ∘f cof 7702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 |
This theorem is referenced by: mndpsuppss 18800 zlmodzxzscm 48240 zlmodzxzadd 48241 lincsum 48313 |
Copyright terms: Public domain | W3C validator |