Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  offvalfv Structured version   Visualization version   GIF version

Theorem offvalfv 48067
Description: The function operation expressed as a mapping with function values. (Contributed by AV, 6-Apr-2019.)
Hypotheses
Ref Expression
offvalfv.a (𝜑𝐴𝑉)
offvalfv.f (𝜑𝐹 Fn 𝐴)
offvalfv.g (𝜑𝐺 Fn 𝐴)
Assertion
Ref Expression
offvalfv (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑅
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem offvalfv
StepHypRef Expression
1 offvalfv.a . 2 (𝜑𝐴𝑉)
2 offvalfv.f . . 3 (𝜑𝐹 Fn 𝐴)
3 fnfvelrn 7114 . . 3 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ ran 𝐹)
42, 3sylan 579 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ran 𝐹)
5 offvalfv.g . . 3 (𝜑𝐺 Fn 𝐴)
6 fnfvelrn 7114 . . 3 ((𝐺 Fn 𝐴𝑥𝐴) → (𝐺𝑥) ∈ ran 𝐺)
75, 6sylan 579 . 2 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ran 𝐺)
8 dffn5 6980 . . 3 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
92, 8sylib 218 . 2 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
10 dffn5 6980 . . 3 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
115, 10sylib 218 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
121, 4, 7, 9, 11offval2 7734 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cmpt 5249  ran crn 5701   Fn wfn 6568  cfv 6573  (class class class)co 7448  f cof 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714
This theorem is referenced by:  zlmodzxzscm  48082  zlmodzxzadd  48083  mndpsuppss  48096  lincsum  48158
  Copyright terms: Public domain W3C validator