MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offvalfv Structured version   Visualization version   GIF version

Theorem offvalfv 7635
Description: The function operation expressed as a mapping with function values. (Contributed by AV, 6-Apr-2019.)
Hypotheses
Ref Expression
offvalfv.a (𝜑𝐴𝑉)
offvalfv.f (𝜑𝐹 Fn 𝐴)
offvalfv.g (𝜑𝐺 Fn 𝐴)
Assertion
Ref Expression
offvalfv (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑅
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem offvalfv
StepHypRef Expression
1 offvalfv.a . 2 (𝜑𝐴𝑉)
2 offvalfv.f . . 3 (𝜑𝐹 Fn 𝐴)
3 fnfvelrn 7014 . . 3 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ ran 𝐹)
42, 3sylan 580 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ran 𝐹)
5 offvalfv.g . . 3 (𝜑𝐺 Fn 𝐴)
6 fnfvelrn 7014 . . 3 ((𝐺 Fn 𝐴𝑥𝐴) → (𝐺𝑥) ∈ ran 𝐺)
75, 6sylan 580 . 2 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ran 𝐺)
8 dffn5 6881 . . 3 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
92, 8sylib 218 . 2 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
10 dffn5 6881 . . 3 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
115, 10sylib 218 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
121, 4, 7, 9, 11offval2 7633 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5173  ran crn 5620   Fn wfn 6477  cfv 6482  (class class class)co 7349  f cof 7611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613
This theorem is referenced by:  mndpsuppss  18639  mplvrpmmhm  33557  zlmodzxzscm  48361  zlmodzxzadd  48362  lincsum  48434
  Copyright terms: Public domain W3C validator