| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offvalfv | Structured version Visualization version GIF version | ||
| Description: The function operation expressed as a mapping with function values. (Contributed by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| offvalfv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offvalfv.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offvalfv.g | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| Ref | Expression |
|---|---|
| offvalfv | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offvalfv.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | offvalfv.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 3 | fnfvelrn 7080 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ran 𝐹) | |
| 4 | 2, 3 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 5 | offvalfv.g | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 6 | fnfvelrn 7080 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ran 𝐺) | |
| 7 | 5, 6 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ran 𝐺) |
| 8 | dffn5 6947 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 9 | 2, 8 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 10 | dffn5 6947 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
| 11 | 5, 10 | sylib 218 | . 2 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
| 12 | 1, 4, 7, 9, 11 | offval2 7699 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5205 ran crn 5666 Fn wfn 6536 ‘cfv 6541 (class class class)co 7413 ∘f cof 7677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 |
| This theorem is referenced by: mndpsuppss 18747 zlmodzxzscm 48231 zlmodzxzadd 48232 lincsum 48304 |
| Copyright terms: Public domain | W3C validator |