Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > offvalfv | Structured version Visualization version GIF version |
Description: The function operation expressed as a mapping with function values. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
offvalfv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offvalfv.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offvalfv.g | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
Ref | Expression |
---|---|
offvalfv | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offvalfv.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | offvalfv.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
3 | fnfvelrn 6952 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ran 𝐹) | |
4 | 2, 3 | sylan 579 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ran 𝐹) |
5 | offvalfv.g | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
6 | fnfvelrn 6952 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ran 𝐺) | |
7 | 5, 6 | sylan 579 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ran 𝐺) |
8 | dffn5 6822 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
9 | 2, 8 | sylib 217 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
10 | dffn5 6822 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
11 | 5, 10 | sylib 217 | . 2 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
12 | 1, 4, 7, 9, 11 | offval2 7544 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ↦ cmpt 5161 ran crn 5589 Fn wfn 6425 ‘cfv 6430 (class class class)co 7268 ∘f cof 7522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 |
This theorem is referenced by: zlmodzxzscm 45645 zlmodzxzadd 45646 mndpsuppss 45659 lincsum 45722 |
Copyright terms: Public domain | W3C validator |