Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  offvalfv Structured version   Visualization version   GIF version

Theorem offvalfv 45656
Description: The function operation expressed as a mapping with function values. (Contributed by AV, 6-Apr-2019.)
Hypotheses
Ref Expression
offvalfv.a (𝜑𝐴𝑉)
offvalfv.f (𝜑𝐹 Fn 𝐴)
offvalfv.g (𝜑𝐺 Fn 𝐴)
Assertion
Ref Expression
offvalfv (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑅
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem offvalfv
StepHypRef Expression
1 offvalfv.a . 2 (𝜑𝐴𝑉)
2 offvalfv.f . . 3 (𝜑𝐹 Fn 𝐴)
3 fnfvelrn 6950 . . 3 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ ran 𝐹)
42, 3sylan 580 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ran 𝐹)
5 offvalfv.g . . 3 (𝜑𝐺 Fn 𝐴)
6 fnfvelrn 6950 . . 3 ((𝐺 Fn 𝐴𝑥𝐴) → (𝐺𝑥) ∈ ran 𝐺)
75, 6sylan 580 . 2 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ran 𝐺)
8 dffn5 6820 . . 3 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
92, 8sylib 217 . 2 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
10 dffn5 6820 . . 3 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
115, 10sylib 217 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
121, 4, 7, 9, 11offval2 7543 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cmpt 5156  ran crn 5585   Fn wfn 6421  cfv 6426  (class class class)co 7267  f cof 7521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523
This theorem is referenced by:  zlmodzxzscm  45671  zlmodzxzadd  45672  mndpsuppss  45685  lincsum  45748
  Copyright terms: Public domain W3C validator