Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > offvalfv | Structured version Visualization version GIF version |
Description: The function operation expressed as a mapping with function values. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
offvalfv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offvalfv.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offvalfv.g | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
Ref | Expression |
---|---|
offvalfv | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offvalfv.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | offvalfv.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
3 | fnfvelrn 6950 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ran 𝐹) | |
4 | 2, 3 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ran 𝐹) |
5 | offvalfv.g | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
6 | fnfvelrn 6950 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ran 𝐺) | |
7 | 5, 6 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ran 𝐺) |
8 | dffn5 6820 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
9 | 2, 8 | sylib 217 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
10 | dffn5 6820 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
11 | 5, 10 | sylib 217 | . 2 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
12 | 1, 4, 7, 9, 11 | offval2 7543 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5156 ran crn 5585 Fn wfn 6421 ‘cfv 6426 (class class class)co 7267 ∘f cof 7521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-of 7523 |
This theorem is referenced by: zlmodzxzscm 45671 zlmodzxzadd 45672 mndpsuppss 45685 lincsum 45748 |
Copyright terms: Public domain | W3C validator |