| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offvalfv | Structured version Visualization version GIF version | ||
| Description: The function operation expressed as a mapping with function values. (Contributed by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| offvalfv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offvalfv.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offvalfv.g | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| Ref | Expression |
|---|---|
| offvalfv | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offvalfv.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | offvalfv.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 3 | fnfvelrn 7014 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ran 𝐹) | |
| 4 | 2, 3 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 5 | offvalfv.g | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 6 | fnfvelrn 7014 | . . 3 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ran 𝐺) | |
| 7 | 5, 6 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ran 𝐺) |
| 8 | dffn5 6881 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 9 | 2, 8 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 10 | dffn5 6881 | . . 3 ⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) | |
| 11 | 5, 10 | sylib 218 | . 2 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
| 12 | 1, 4, 7, 9, 11 | offval2 7633 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5173 ran crn 5620 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 |
| This theorem is referenced by: mndpsuppss 18639 mplvrpmmhm 33557 zlmodzxzscm 48361 zlmodzxzadd 48362 lincsum 48434 |
| Copyright terms: Public domain | W3C validator |