Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincext2 Structured version   Visualization version   GIF version

Theorem lincext2 44864
Description: Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincext.b 𝐵 = (Base‘𝑀)
lincext.r 𝑅 = (Scalar‘𝑀)
lincext.e 𝐸 = (Base‘𝑅)
lincext.0 0 = (0g𝑅)
lincext.z 𝑍 = (0g𝑀)
lincext.n 𝑁 = (invg𝑅)
lincext.f 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
Assertion
Ref Expression
lincext2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 )
Distinct variable groups:   𝑧,𝐵   𝑧,𝐸   𝑧,𝐺   𝑧,𝑀   𝑧,𝑆   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝑁(𝑧)   0 (𝑧)   𝑍(𝑧)

Proof of Theorem lincext2
StepHypRef Expression
1 fvex 6658 . . . . . 6 (𝑁𝑌) ∈ V
2 fvex 6658 . . . . . 6 (𝐺𝑧) ∈ V
31, 2ifex 4473 . . . . 5 if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)) ∈ V
4 lincext.f . . . . 5 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
53, 4dmmpti 6464 . . . 4 dom 𝐹 = 𝑆
65difeq1i 4046 . . 3 (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) = (𝑆 ∖ (𝑆 ∖ {𝑋}))
7 snssi 4701 . . . . . . 7 (𝑋𝑆 → {𝑋} ⊆ 𝑆)
873ad2ant2 1131 . . . . . 6 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → {𝑋} ⊆ 𝑆)
983ad2ant2 1131 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → {𝑋} ⊆ 𝑆)
10 dfss4 4185 . . . . 5 ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋})
119, 10sylib 221 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋})
12 snfi 8577 . . . 4 {𝑋} ∈ Fin
1311, 12eqeltrdi 2898 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) ∈ Fin)
146, 13eqeltrid 2894 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) ∈ Fin)
15 lincext.b . . . 4 𝐵 = (Base‘𝑀)
16 lincext.r . . . 4 𝑅 = (Scalar‘𝑀)
17 lincext.e . . . 4 𝐸 = (Base‘𝑅)
18 lincext.0 . . . 4 0 = (0g𝑅)
19 lincext.z . . . 4 𝑍 = (0g𝑀)
20 lincext.n . . . 4 𝑁 = (invg𝑅)
2115, 16, 17, 18, 19, 20, 4lincext1 44863 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
22213adant3 1129 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 ∈ (𝐸m 𝑆))
23 elmapfun 8413 . . 3 (𝐹 ∈ (𝐸m 𝑆) → Fun 𝐹)
2422, 23syl 17 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → Fun 𝐹)
25 elmapi 8411 . . . . 5 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
264fdmdifeqresdif 44743 . . . . 5 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
2725, 26syl 17 . . . 4 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
28273ad2ant3 1132 . . 3 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
29283ad2ant2 1131 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
30 simp3 1135 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 finSupp 0 )
3118fvexi 6659 . . 3 0 ∈ V
3231a1i 11 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 0 ∈ V)
3314, 22, 24, 29, 30, 32resfsupp 8844 1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  wss 3881  ifcif 4425  𝒫 cpw 4497  {csn 4525   class class class wbr 5030  cmpt 5110  dom cdm 5519  cres 5521  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492   finSupp cfsupp 8817  Basecbs 16475  Scalarcsca 16560  0gc0g 16705  invgcminusg 18096  LModclmod 19627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-fin 8496  df-fsupp 8818  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-ring 19292  df-lmod 19629
This theorem is referenced by:  lincext3  44865  lindslinindsimp1  44866  islindeps2  44892
  Copyright terms: Public domain W3C validator