![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincext2 | Structured version Visualization version GIF version |
Description: Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
lincext.b | ⊢ 𝐵 = (Base‘𝑀) |
lincext.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lincext.e | ⊢ 𝐸 = (Base‘𝑅) |
lincext.0 | ⊢ 0 = (0g‘𝑅) |
lincext.z | ⊢ 𝑍 = (0g‘𝑀) |
lincext.n | ⊢ 𝑁 = (invg‘𝑅) |
lincext.f | ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) |
Ref | Expression |
---|---|
lincext2 | ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6920 | . . . . . 6 ⊢ (𝑁‘𝑌) ∈ V | |
2 | fvex 6920 | . . . . . 6 ⊢ (𝐺‘𝑧) ∈ V | |
3 | 1, 2 | ifex 4581 | . . . . 5 ⊢ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧)) ∈ V |
4 | lincext.f | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) | |
5 | 3, 4 | dmmpti 6713 | . . . 4 ⊢ dom 𝐹 = 𝑆 |
6 | 5 | difeq1i 4132 | . . 3 ⊢ (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) = (𝑆 ∖ (𝑆 ∖ {𝑋})) |
7 | snssi 4813 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑆 → {𝑋} ⊆ 𝑆) | |
8 | 7 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) → {𝑋} ⊆ 𝑆) |
9 | 8 | 3ad2ant2 1133 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → {𝑋} ⊆ 𝑆) |
10 | dfss4 4275 | . . . . 5 ⊢ ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋}) | |
11 | 9, 10 | sylib 218 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋}) |
12 | snfi 9082 | . . . 4 ⊢ {𝑋} ∈ Fin | |
13 | 11, 12 | eqeltrdi 2847 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) ∈ Fin) |
14 | 6, 13 | eqeltrid 2843 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) ∈ Fin) |
15 | lincext.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
16 | lincext.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑀) | |
17 | lincext.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
18 | lincext.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
19 | lincext.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
20 | lincext.n | . . . 4 ⊢ 𝑁 = (invg‘𝑅) | |
21 | 15, 16, 17, 18, 19, 20, 4 | lincext1 48300 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸 ↑m 𝑆)) |
22 | 21 | 3adant3 1131 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 ∈ (𝐸 ↑m 𝑆)) |
23 | elmapfun 8905 | . . 3 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → Fun 𝐹) | |
24 | 22, 23 | syl 17 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → Fun 𝐹) |
25 | elmapi 8888 | . . . . 5 ⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸) | |
26 | 4 | fdmdifeqresdif 48187 | . . . . 5 ⊢ (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
27 | 25, 26 | syl 17 | . . . 4 ⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
28 | 27 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
29 | 28 | 3ad2ant2 1133 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
30 | simp3 1137 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 finSupp 0 ) | |
31 | 18 | fvexi 6921 | . . 3 ⊢ 0 ∈ V |
32 | 31 | a1i 11 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 0 ∈ V) |
33 | 14, 22, 24, 29, 30, 32 | resfsupp 9434 | 1 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 ⊆ wss 3963 ifcif 4531 𝒫 cpw 4605 {csn 4631 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5689 ↾ cres 5691 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Fincfn 8984 finSupp cfsupp 9399 Basecbs 17245 Scalarcsca 17301 0gc0g 17486 invgcminusg 18965 LModclmod 20875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-1o 8505 df-map 8867 df-en 8985 df-fin 8988 df-fsupp 9400 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-ring 20253 df-lmod 20877 |
This theorem is referenced by: lincext3 48302 lindslinindsimp1 48303 islindeps2 48329 |
Copyright terms: Public domain | W3C validator |