| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincext2 | Structured version Visualization version GIF version | ||
| Description: Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| lincext.b | ⊢ 𝐵 = (Base‘𝑀) |
| lincext.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| lincext.e | ⊢ 𝐸 = (Base‘𝑅) |
| lincext.0 | ⊢ 0 = (0g‘𝑅) |
| lincext.z | ⊢ 𝑍 = (0g‘𝑀) |
| lincext.n | ⊢ 𝑁 = (invg‘𝑅) |
| lincext.f | ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) |
| Ref | Expression |
|---|---|
| lincext2 | ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . . . . 6 ⊢ (𝑁‘𝑌) ∈ V | |
| 2 | fvex 6835 | . . . . . 6 ⊢ (𝐺‘𝑧) ∈ V | |
| 3 | 1, 2 | ifex 4523 | . . . . 5 ⊢ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧)) ∈ V |
| 4 | lincext.f | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) | |
| 5 | 3, 4 | dmmpti 6625 | . . . 4 ⊢ dom 𝐹 = 𝑆 |
| 6 | 5 | difeq1i 4069 | . . 3 ⊢ (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) = (𝑆 ∖ (𝑆 ∖ {𝑋})) |
| 7 | snssi 4757 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑆 → {𝑋} ⊆ 𝑆) | |
| 8 | 7 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) → {𝑋} ⊆ 𝑆) |
| 9 | 8 | 3ad2ant2 1134 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → {𝑋} ⊆ 𝑆) |
| 10 | dfss4 4216 | . . . . 5 ⊢ ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋}) | |
| 11 | 9, 10 | sylib 218 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋}) |
| 12 | snfi 8965 | . . . 4 ⊢ {𝑋} ∈ Fin | |
| 13 | 11, 12 | eqeltrdi 2839 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) ∈ Fin) |
| 14 | 6, 13 | eqeltrid 2835 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) ∈ Fin) |
| 15 | lincext.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 16 | lincext.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 17 | lincext.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
| 18 | lincext.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 19 | lincext.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
| 20 | lincext.n | . . . 4 ⊢ 𝑁 = (invg‘𝑅) | |
| 21 | 15, 16, 17, 18, 19, 20, 4 | lincext1 48494 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸 ↑m 𝑆)) |
| 22 | 21 | 3adant3 1132 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 ∈ (𝐸 ↑m 𝑆)) |
| 23 | elmapfun 8790 | . . 3 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → Fun 𝐹) | |
| 24 | 22, 23 | syl 17 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → Fun 𝐹) |
| 25 | elmapi 8773 | . . . . 5 ⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸) | |
| 26 | 4 | fdmdifeqresdif 48381 | . . . . 5 ⊢ (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
| 28 | 27 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
| 29 | 28 | 3ad2ant2 1134 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
| 30 | simp3 1138 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 finSupp 0 ) | |
| 31 | 18 | fvexi 6836 | . . 3 ⊢ 0 ∈ V |
| 32 | 31 | a1i 11 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 0 ∈ V) |
| 33 | 14, 22, 24, 29, 30, 32 | resfsupp 9280 | 1 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 ifcif 4472 𝒫 cpw 4547 {csn 4573 class class class wbr 5089 ↦ cmpt 5170 dom cdm 5614 ↾ cres 5616 Fun wfun 6475 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 finSupp cfsupp 9245 Basecbs 17120 Scalarcsca 17164 0gc0g 17343 invgcminusg 18847 LModclmod 20793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-1o 8385 df-map 8752 df-en 8870 df-fin 8873 df-fsupp 9246 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-ring 20153 df-lmod 20795 |
| This theorem is referenced by: lincext3 48496 lindslinindsimp1 48497 islindeps2 48523 |
| Copyright terms: Public domain | W3C validator |