| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincext2 | Structured version Visualization version GIF version | ||
| Description: Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| lincext.b | ⊢ 𝐵 = (Base‘𝑀) |
| lincext.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| lincext.e | ⊢ 𝐸 = (Base‘𝑅) |
| lincext.0 | ⊢ 0 = (0g‘𝑅) |
| lincext.z | ⊢ 𝑍 = (0g‘𝑀) |
| lincext.n | ⊢ 𝑁 = (invg‘𝑅) |
| lincext.f | ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) |
| Ref | Expression |
|---|---|
| lincext2 | ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6871 | . . . . . 6 ⊢ (𝑁‘𝑌) ∈ V | |
| 2 | fvex 6871 | . . . . . 6 ⊢ (𝐺‘𝑧) ∈ V | |
| 3 | 1, 2 | ifex 4539 | . . . . 5 ⊢ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧)) ∈ V |
| 4 | lincext.f | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) | |
| 5 | 3, 4 | dmmpti 6662 | . . . 4 ⊢ dom 𝐹 = 𝑆 |
| 6 | 5 | difeq1i 4085 | . . 3 ⊢ (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) = (𝑆 ∖ (𝑆 ∖ {𝑋})) |
| 7 | snssi 4772 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑆 → {𝑋} ⊆ 𝑆) | |
| 8 | 7 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) → {𝑋} ⊆ 𝑆) |
| 9 | 8 | 3ad2ant2 1134 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → {𝑋} ⊆ 𝑆) |
| 10 | dfss4 4232 | . . . . 5 ⊢ ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋}) | |
| 11 | 9, 10 | sylib 218 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋}) |
| 12 | snfi 9014 | . . . 4 ⊢ {𝑋} ∈ Fin | |
| 13 | 11, 12 | eqeltrdi 2836 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) ∈ Fin) |
| 14 | 6, 13 | eqeltrid 2832 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) ∈ Fin) |
| 15 | lincext.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 16 | lincext.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 17 | lincext.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
| 18 | lincext.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 19 | lincext.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
| 20 | lincext.n | . . . 4 ⊢ 𝑁 = (invg‘𝑅) | |
| 21 | 15, 16, 17, 18, 19, 20, 4 | lincext1 48443 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸 ↑m 𝑆)) |
| 22 | 21 | 3adant3 1132 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 ∈ (𝐸 ↑m 𝑆)) |
| 23 | elmapfun 8839 | . . 3 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → Fun 𝐹) | |
| 24 | 22, 23 | syl 17 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → Fun 𝐹) |
| 25 | elmapi 8822 | . . . . 5 ⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸) | |
| 26 | 4 | fdmdifeqresdif 48330 | . . . . 5 ⊢ (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
| 28 | 27 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
| 29 | 28 | 3ad2ant2 1134 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
| 30 | simp3 1138 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 finSupp 0 ) | |
| 31 | 18 | fvexi 6872 | . . 3 ⊢ 0 ∈ V |
| 32 | 31 | a1i 11 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 0 ∈ V) |
| 33 | 14, 22, 24, 29, 30, 32 | resfsupp 9347 | 1 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ifcif 4488 𝒫 cpw 4563 {csn 4589 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ↾ cres 5640 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 finSupp cfsupp 9312 Basecbs 17179 Scalarcsca 17223 0gc0g 17402 invgcminusg 18866 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-1o 8434 df-map 8801 df-en 8919 df-fin 8922 df-fsupp 9313 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-ring 20144 df-lmod 20768 |
| This theorem is referenced by: lincext3 48445 lindslinindsimp1 48446 islindeps2 48472 |
| Copyright terms: Public domain | W3C validator |