![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincext2 | Structured version Visualization version GIF version |
Description: Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
lincext.b | ⊢ 𝐵 = (Base‘𝑀) |
lincext.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lincext.e | ⊢ 𝐸 = (Base‘𝑅) |
lincext.0 | ⊢ 0 = (0g‘𝑅) |
lincext.z | ⊢ 𝑍 = (0g‘𝑀) |
lincext.n | ⊢ 𝑁 = (invg‘𝑅) |
lincext.f | ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) |
Ref | Expression |
---|---|
lincext2 | ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6855 | . . . . . 6 ⊢ (𝑁‘𝑌) ∈ V | |
2 | fvex 6855 | . . . . . 6 ⊢ (𝐺‘𝑧) ∈ V | |
3 | 1, 2 | ifex 4536 | . . . . 5 ⊢ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧)) ∈ V |
4 | lincext.f | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) | |
5 | 3, 4 | dmmpti 6645 | . . . 4 ⊢ dom 𝐹 = 𝑆 |
6 | 5 | difeq1i 4078 | . . 3 ⊢ (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) = (𝑆 ∖ (𝑆 ∖ {𝑋})) |
7 | snssi 4768 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑆 → {𝑋} ⊆ 𝑆) | |
8 | 7 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) → {𝑋} ⊆ 𝑆) |
9 | 8 | 3ad2ant2 1134 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → {𝑋} ⊆ 𝑆) |
10 | dfss4 4218 | . . . . 5 ⊢ ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋}) | |
11 | 9, 10 | sylib 217 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋}) |
12 | snfi 8988 | . . . 4 ⊢ {𝑋} ∈ Fin | |
13 | 11, 12 | eqeltrdi 2846 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) ∈ Fin) |
14 | 6, 13 | eqeltrid 2842 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) ∈ Fin) |
15 | lincext.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
16 | lincext.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑀) | |
17 | lincext.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
18 | lincext.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
19 | lincext.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
20 | lincext.n | . . . 4 ⊢ 𝑁 = (invg‘𝑅) | |
21 | 15, 16, 17, 18, 19, 20, 4 | lincext1 46525 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸 ↑m 𝑆)) |
22 | 21 | 3adant3 1132 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 ∈ (𝐸 ↑m 𝑆)) |
23 | elmapfun 8804 | . . 3 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → Fun 𝐹) | |
24 | 22, 23 | syl 17 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → Fun 𝐹) |
25 | elmapi 8787 | . . . . 5 ⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸) | |
26 | 4 | fdmdifeqresdif 46407 | . . . . 5 ⊢ (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
27 | 25, 26 | syl 17 | . . . 4 ⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
28 | 27 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
29 | 28 | 3ad2ant2 1134 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
30 | simp3 1138 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 finSupp 0 ) | |
31 | 18 | fvexi 6856 | . . 3 ⊢ 0 ∈ V |
32 | 31 | a1i 11 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 0 ∈ V) |
33 | 14, 22, 24, 29, 30, 32 | resfsupp 9332 | 1 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ∖ cdif 3907 ⊆ wss 3910 ifcif 4486 𝒫 cpw 4560 {csn 4586 class class class wbr 5105 ↦ cmpt 5188 dom cdm 5633 ↾ cres 5635 Fun wfun 6490 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 Fincfn 8883 finSupp cfsupp 9305 Basecbs 17083 Scalarcsca 17136 0gc0g 17321 invgcminusg 18749 LModclmod 20322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-1o 8412 df-map 8767 df-en 8884 df-fin 8887 df-fsupp 9306 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-ring 19966 df-lmod 20324 |
This theorem is referenced by: lincext3 46527 lindslinindsimp1 46528 islindeps2 46554 |
Copyright terms: Public domain | W3C validator |