Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincext2 Structured version   Visualization version   GIF version

Theorem lincext2 43043
Description: Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincext.b 𝐵 = (Base‘𝑀)
lincext.r 𝑅 = (Scalar‘𝑀)
lincext.e 𝐸 = (Base‘𝑅)
lincext.0 0 = (0g𝑅)
lincext.z 𝑍 = (0g𝑀)
lincext.n 𝑁 = (invg𝑅)
lincext.f 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
Assertion
Ref Expression
lincext2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 )
Distinct variable groups:   𝑧,𝐵   𝑧,𝐸   𝑧,𝐺   𝑧,𝑀   𝑧,𝑆   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝑁(𝑧)   0 (𝑧)   𝑍(𝑧)

Proof of Theorem lincext2
StepHypRef Expression
1 fvex 6424 . . . . . 6 (𝑁𝑌) ∈ V
2 fvex 6424 . . . . . 6 (𝐺𝑧) ∈ V
31, 2ifex 4325 . . . . 5 if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)) ∈ V
4 lincext.f . . . . 5 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
53, 4dmmpti 6234 . . . 4 dom 𝐹 = 𝑆
65difeq1i 3922 . . 3 (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) = (𝑆 ∖ (𝑆 ∖ {𝑋}))
7 snssi 4527 . . . . . . 7 (𝑋𝑆 → {𝑋} ⊆ 𝑆)
873ad2ant2 1165 . . . . . 6 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) → {𝑋} ⊆ 𝑆)
983ad2ant2 1165 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → {𝑋} ⊆ 𝑆)
10 dfss4 4059 . . . . 5 ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋})
119, 10sylib 210 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋})
12 snfi 8280 . . . 4 {𝑋} ∈ Fin
1311, 12syl6eqel 2886 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) ∈ Fin)
146, 13syl5eqel 2882 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) ∈ Fin)
15 lincext.b . . . 4 𝐵 = (Base‘𝑀)
16 lincext.r . . . 4 𝑅 = (Scalar‘𝑀)
17 lincext.e . . . 4 𝐸 = (Base‘𝑅)
18 lincext.0 . . . 4 0 = (0g𝑅)
19 lincext.z . . . 4 𝑍 = (0g𝑀)
20 lincext.n . . . 4 𝑁 = (invg𝑅)
2115, 16, 17, 18, 19, 20, 4lincext1 43042 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸𝑚 𝑆))
22213adant3 1163 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 ∈ (𝐸𝑚 𝑆))
23 elmapfun 8119 . . 3 (𝐹 ∈ (𝐸𝑚 𝑆) → Fun 𝐹)
2422, 23syl 17 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → Fun 𝐹)
25 elmapi 8117 . . . . 5 (𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
264fdmdifeqresdif 42919 . . . . 5 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
2725, 26syl 17 . . . 4 (𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋})) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
28273ad2ant3 1166 . . 3 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
29283ad2ant2 1165 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
30 simp3 1169 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 finSupp 0 )
3118fvexi 6425 . . 3 0 ∈ V
3231a1i 11 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 0 ∈ V)
3314, 22, 24, 29, 30, 32resfsupp 8544 1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸𝑚 (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  Vcvv 3385  cdif 3766  wss 3769  ifcif 4277  𝒫 cpw 4349  {csn 4368   class class class wbr 4843  cmpt 4922  dom cdm 5312  cres 5314  Fun wfun 6095  wf 6097  cfv 6101  (class class class)co 6878  𝑚 cmap 8095  Fincfn 8195   finSupp cfsupp 8517  Basecbs 16184  Scalarcsca 16270  0gc0g 16415  invgcminusg 17739  LModclmod 19181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-fin 8199  df-fsupp 8518  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-minusg 17742  df-ring 18865  df-lmod 19183
This theorem is referenced by:  lincext3  43044  lindslinindsimp1  43045  islindeps2  43071
  Copyright terms: Public domain W3C validator