![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincext2 | Structured version Visualization version GIF version |
Description: Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
lincext.b | ⊢ 𝐵 = (Base‘𝑀) |
lincext.r | ⊢ 𝑅 = (Scalar‘𝑀) |
lincext.e | ⊢ 𝐸 = (Base‘𝑅) |
lincext.0 | ⊢ 0 = (0g‘𝑅) |
lincext.z | ⊢ 𝑍 = (0g‘𝑀) |
lincext.n | ⊢ 𝑁 = (invg‘𝑅) |
lincext.f | ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) |
Ref | Expression |
---|---|
lincext2 | ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6933 | . . . . . 6 ⊢ (𝑁‘𝑌) ∈ V | |
2 | fvex 6933 | . . . . . 6 ⊢ (𝐺‘𝑧) ∈ V | |
3 | 1, 2 | ifex 4598 | . . . . 5 ⊢ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧)) ∈ V |
4 | lincext.f | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) | |
5 | 3, 4 | dmmpti 6724 | . . . 4 ⊢ dom 𝐹 = 𝑆 |
6 | 5 | difeq1i 4145 | . . 3 ⊢ (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) = (𝑆 ∖ (𝑆 ∖ {𝑋})) |
7 | snssi 4833 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑆 → {𝑋} ⊆ 𝑆) | |
8 | 7 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) → {𝑋} ⊆ 𝑆) |
9 | 8 | 3ad2ant2 1134 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → {𝑋} ⊆ 𝑆) |
10 | dfss4 4288 | . . . . 5 ⊢ ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋}) | |
11 | 9, 10 | sylib 218 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋}) |
12 | snfi 9109 | . . . 4 ⊢ {𝑋} ∈ Fin | |
13 | 11, 12 | eqeltrdi 2852 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) ∈ Fin) |
14 | 6, 13 | eqeltrid 2848 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) ∈ Fin) |
15 | lincext.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
16 | lincext.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑀) | |
17 | lincext.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
18 | lincext.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
19 | lincext.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
20 | lincext.n | . . . 4 ⊢ 𝑁 = (invg‘𝑅) | |
21 | 15, 16, 17, 18, 19, 20, 4 | lincext1 48183 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸 ↑m 𝑆)) |
22 | 21 | 3adant3 1132 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 ∈ (𝐸 ↑m 𝑆)) |
23 | elmapfun 8924 | . . 3 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → Fun 𝐹) | |
24 | 22, 23 | syl 17 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → Fun 𝐹) |
25 | elmapi 8907 | . . . . 5 ⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸) | |
26 | 4 | fdmdifeqresdif 48066 | . . . . 5 ⊢ (𝐺:(𝑆 ∖ {𝑋})⟶𝐸 → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
27 | 25, 26 | syl 17 | . . . 4 ⊢ (𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
28 | 27 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
29 | 28 | 3ad2ant2 1134 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) |
30 | simp3 1138 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 finSupp 0 ) | |
31 | 18 | fvexi 6934 | . . 3 ⊢ 0 ∈ V |
32 | 31 | a1i 11 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 0 ∈ V) |
33 | 14, 22, 24, 29, 30, 32 | resfsupp 9465 | 1 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 ifcif 4548 𝒫 cpw 4622 {csn 4648 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ↾ cres 5702 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Fincfn 9003 finSupp cfsupp 9431 Basecbs 17258 Scalarcsca 17314 0gc0g 17499 invgcminusg 18974 LModclmod 20880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-1o 8522 df-map 8886 df-en 9004 df-fin 9007 df-fsupp 9432 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-ring 20262 df-lmod 20882 |
This theorem is referenced by: lincext3 48185 lindslinindsimp1 48186 islindeps2 48212 |
Copyright terms: Public domain | W3C validator |