Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincext2 Structured version   Visualization version   GIF version

Theorem lincext2 48431
Description: Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincext.b 𝐵 = (Base‘𝑀)
lincext.r 𝑅 = (Scalar‘𝑀)
lincext.e 𝐸 = (Base‘𝑅)
lincext.0 0 = (0g𝑅)
lincext.z 𝑍 = (0g𝑀)
lincext.n 𝑁 = (invg𝑅)
lincext.f 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
Assertion
Ref Expression
lincext2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 )
Distinct variable groups:   𝑧,𝐵   𝑧,𝐸   𝑧,𝐺   𝑧,𝑀   𝑧,𝑆   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝑁(𝑧)   0 (𝑧)   𝑍(𝑧)

Proof of Theorem lincext2
StepHypRef Expression
1 fvex 6889 . . . . . 6 (𝑁𝑌) ∈ V
2 fvex 6889 . . . . . 6 (𝐺𝑧) ∈ V
31, 2ifex 4551 . . . . 5 if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)) ∈ V
4 lincext.f . . . . 5 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
53, 4dmmpti 6682 . . . 4 dom 𝐹 = 𝑆
65difeq1i 4097 . . 3 (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) = (𝑆 ∖ (𝑆 ∖ {𝑋}))
7 snssi 4784 . . . . . . 7 (𝑋𝑆 → {𝑋} ⊆ 𝑆)
873ad2ant2 1134 . . . . . 6 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → {𝑋} ⊆ 𝑆)
983ad2ant2 1134 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → {𝑋} ⊆ 𝑆)
10 dfss4 4244 . . . . 5 ({𝑋} ⊆ 𝑆 ↔ (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋})
119, 10sylib 218 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) = {𝑋})
12 snfi 9057 . . . 4 {𝑋} ∈ Fin
1311, 12eqeltrdi 2842 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (𝑆 ∖ (𝑆 ∖ {𝑋})) ∈ Fin)
146, 13eqeltrid 2838 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → (dom 𝐹 ∖ (𝑆 ∖ {𝑋})) ∈ Fin)
15 lincext.b . . . 4 𝐵 = (Base‘𝑀)
16 lincext.r . . . 4 𝑅 = (Scalar‘𝑀)
17 lincext.e . . . 4 𝐸 = (Base‘𝑅)
18 lincext.0 . . . 4 0 = (0g𝑅)
19 lincext.z . . . 4 𝑍 = (0g𝑀)
20 lincext.n . . . 4 𝑁 = (invg𝑅)
2115, 16, 17, 18, 19, 20, 4lincext1 48430 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
22213adant3 1132 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 ∈ (𝐸m 𝑆))
23 elmapfun 8880 . . 3 (𝐹 ∈ (𝐸m 𝑆) → Fun 𝐹)
2422, 23syl 17 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → Fun 𝐹)
25 elmapi 8863 . . . . 5 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
264fdmdifeqresdif 48317 . . . . 5 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
2725, 26syl 17 . . . 4 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
28273ad2ant3 1135 . . 3 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
29283ad2ant2 1134 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
30 simp3 1138 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐺 finSupp 0 )
3118fvexi 6890 . . 3 0 ∈ V
3231a1i 11 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 0 ∈ V)
3314, 22, 24, 29, 30, 32resfsupp 9408 1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cdif 3923  wss 3926  ifcif 4500  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  cmpt 5201  dom cdm 5654  cres 5656  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959   finSupp cfsupp 9373  Basecbs 17228  Scalarcsca 17274  0gc0g 17453  invgcminusg 18917  LModclmod 20817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-1o 8480  df-map 8842  df-en 8960  df-fin 8963  df-fsupp 9374  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-ring 20195  df-lmod 20819
This theorem is referenced by:  lincext3  48432  lindslinindsimp1  48433  islindeps2  48459
  Copyright terms: Public domain W3C validator