MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flflp1 Structured version   Visualization version   GIF version

Theorem flflp1 13172
Description: Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
Assertion
Ref Expression
flflp1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵𝐴 < ((⌊‘𝐵) + 1)))

Proof of Theorem flflp1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 flltp1 13165 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21ad3antrrr 729 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐴) + 1))
3 flval 13159 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘𝐵) = (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))))
43ad3antlr 730 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) = (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))))
5 simplr 768 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) ≤ 𝐵)
61adantr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 < ((⌊‘𝐴) + 1))
7 reflcl 13161 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
8 peano2re 10802 . . . . . . . . . . . . . . 15 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
97, 8syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
109adantl 485 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘𝐴) + 1) ∈ ℝ)
11 lttr 10706 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
1210, 11mpd3an3 1459 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
1312ancoms 462 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
146, 13mpan2d 693 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < ((⌊‘𝐴) + 1)))
1514imp 410 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 < ((⌊‘𝐴) + 1))
1615adantlr 714 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 < ((⌊‘𝐴) + 1))
17 flcl 13160 . . . . . . . . . 10 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
18 rebtwnz 12335 . . . . . . . . . 10 (𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1)))
19 breq1 5033 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐴) → (𝑥𝐵 ↔ (⌊‘𝐴) ≤ 𝐵))
20 oveq1 7142 . . . . . . . . . . . . 13 (𝑥 = (⌊‘𝐴) → (𝑥 + 1) = ((⌊‘𝐴) + 1))
2120breq2d 5042 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐴) → (𝐵 < (𝑥 + 1) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
2219, 21anbi12d 633 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐴) → ((𝑥𝐵𝐵 < (𝑥 + 1)) ↔ ((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1))))
2322riota2 7118 . . . . . . . . . 10 (((⌊‘𝐴) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
2417, 18, 23syl2an 598 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
2524ad2antrr 725 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
265, 16, 25mpbi2and 711 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴))
274, 26eqtrd 2833 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) = (⌊‘𝐴))
2827oveq1d 7150 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → ((⌊‘𝐵) + 1) = ((⌊‘𝐴) + 1))
292, 28breqtrrd 5058 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐵) + 1))
3029ex 416 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → (𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
31 lenlt 10708 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
32 flltp1 13165 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 < ((⌊‘𝐵) + 1))
3332adantl 485 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 < ((⌊‘𝐵) + 1))
34 reflcl 13161 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘𝐵) ∈ ℝ)
35 peano2re 10802 . . . . . . . . 9 ((⌊‘𝐵) ∈ ℝ → ((⌊‘𝐵) + 1) ∈ ℝ)
3634, 35syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → ((⌊‘𝐵) + 1) ∈ ℝ)
3736adantl 485 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐵) + 1) ∈ ℝ)
38 lelttr 10720 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((⌊‘𝐵) + 1) ∈ ℝ) → ((𝐴𝐵𝐵 < ((⌊‘𝐵) + 1)) → 𝐴 < ((⌊‘𝐵) + 1)))
3937, 38mpd3an3 1459 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < ((⌊‘𝐵) + 1)) → 𝐴 < ((⌊‘𝐵) + 1)))
4033, 39mpan2d 693 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 < ((⌊‘𝐵) + 1)))
4131, 40sylbird 263 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
4241adantr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → (¬ 𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
4330, 42pm2.61d 182 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → 𝐴 < ((⌊‘𝐵) + 1))
44 flval 13159 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4544ad3antrrr 729 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4634ad2antlr 726 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ∈ ℝ)
47 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ)
48 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ)
49 flle 13164 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (⌊‘𝐵) ≤ 𝐵)
5049ad2antlr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐵)
51 simpr 488 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴)
5246, 48, 47, 50, 51lelttrd 10787 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) < 𝐴)
5346, 47, 52ltled 10777 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐴)
5453adantlr 714 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐴)
55 simplr 768 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐵) + 1))
56 flcl 13160 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘𝐵) ∈ ℤ)
57 rebtwnz 12335 . . . . . . . . 9 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
58 breq1 5033 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐵) → (𝑥𝐴 ↔ (⌊‘𝐵) ≤ 𝐴))
59 oveq1 7142 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐵) → (𝑥 + 1) = ((⌊‘𝐵) + 1))
6059breq2d 5042 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐵) → (𝐴 < (𝑥 + 1) ↔ 𝐴 < ((⌊‘𝐵) + 1)))
6158, 60anbi12d 633 . . . . . . . . . 10 (𝑥 = (⌊‘𝐵) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1))))
6261riota2 7118 . . . . . . . . 9 (((⌊‘𝐵) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6356, 57, 62syl2anr 599 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6463ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6554, 55, 64mpbi2and 711 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵))
6645, 65eqtrd 2833 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) = (⌊‘𝐵))
6749ad3antlr 730 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐵)
6866, 67eqbrtrd 5052 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) ≤ 𝐵)
6968ex 416 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
70 flle 13164 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
7170adantr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ≤ 𝐴)
727adantr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ∈ ℝ)
73 letr 10723 . . . . . . . 8 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
74733coml 1124 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
7572, 74mpd3an3 1459 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
7671, 75mpand 694 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (⌊‘𝐴) ≤ 𝐵))
7731, 76sylbird 263 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
7877adantr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (¬ 𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
7969, 78pm2.61d 182 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (⌊‘𝐴) ≤ 𝐵)
8043, 79impbida 800 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵𝐴 < ((⌊‘𝐵) + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  ∃!wreu 3108   class class class wbr 5030  cfv 6324  crio 7092  (class class class)co 7135  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cz 11969  cfl 13155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fl 13157
This theorem is referenced by:  itg2addnclem2  35109  hashnzfzclim  41026  fllog2  44982
  Copyright terms: Public domain W3C validator