MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flflp1 Structured version   Visualization version   GIF version

Theorem flflp1 13184
Description: Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
Assertion
Ref Expression
flflp1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵𝐴 < ((⌊‘𝐵) + 1)))

Proof of Theorem flflp1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 flltp1 13177 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21ad3antrrr 729 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐴) + 1))
3 flval 13171 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘𝐵) = (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))))
43ad3antlr 730 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) = (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))))
5 simplr 768 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) ≤ 𝐵)
61adantr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 < ((⌊‘𝐴) + 1))
7 reflcl 13173 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
8 peano2re 10812 . . . . . . . . . . . . . . 15 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
97, 8syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
109adantl 485 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘𝐴) + 1) ∈ ℝ)
11 lttr 10716 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
1210, 11mpd3an3 1459 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
1312ancoms 462 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
146, 13mpan2d 693 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < ((⌊‘𝐴) + 1)))
1514imp 410 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 < ((⌊‘𝐴) + 1))
1615adantlr 714 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 < ((⌊‘𝐴) + 1))
17 flcl 13172 . . . . . . . . . 10 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
18 rebtwnz 12347 . . . . . . . . . 10 (𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1)))
19 breq1 5056 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐴) → (𝑥𝐵 ↔ (⌊‘𝐴) ≤ 𝐵))
20 oveq1 7157 . . . . . . . . . . . . 13 (𝑥 = (⌊‘𝐴) → (𝑥 + 1) = ((⌊‘𝐴) + 1))
2120breq2d 5065 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐴) → (𝐵 < (𝑥 + 1) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
2219, 21anbi12d 633 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐴) → ((𝑥𝐵𝐵 < (𝑥 + 1)) ↔ ((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1))))
2322riota2 7133 . . . . . . . . . 10 (((⌊‘𝐴) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
2417, 18, 23syl2an 598 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
2524ad2antrr 725 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
265, 16, 25mpbi2and 711 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴))
274, 26eqtrd 2859 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) = (⌊‘𝐴))
2827oveq1d 7165 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → ((⌊‘𝐵) + 1) = ((⌊‘𝐴) + 1))
292, 28breqtrrd 5081 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐵) + 1))
3029ex 416 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → (𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
31 lenlt 10718 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
32 flltp1 13177 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 < ((⌊‘𝐵) + 1))
3332adantl 485 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 < ((⌊‘𝐵) + 1))
34 reflcl 13173 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘𝐵) ∈ ℝ)
35 peano2re 10812 . . . . . . . . 9 ((⌊‘𝐵) ∈ ℝ → ((⌊‘𝐵) + 1) ∈ ℝ)
3634, 35syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → ((⌊‘𝐵) + 1) ∈ ℝ)
3736adantl 485 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐵) + 1) ∈ ℝ)
38 lelttr 10730 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((⌊‘𝐵) + 1) ∈ ℝ) → ((𝐴𝐵𝐵 < ((⌊‘𝐵) + 1)) → 𝐴 < ((⌊‘𝐵) + 1)))
3937, 38mpd3an3 1459 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < ((⌊‘𝐵) + 1)) → 𝐴 < ((⌊‘𝐵) + 1)))
4033, 39mpan2d 693 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 < ((⌊‘𝐵) + 1)))
4131, 40sylbird 263 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
4241adantr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → (¬ 𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
4330, 42pm2.61d 182 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → 𝐴 < ((⌊‘𝐵) + 1))
44 flval 13171 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4544ad3antrrr 729 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4634ad2antlr 726 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ∈ ℝ)
47 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ)
48 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ)
49 flle 13176 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (⌊‘𝐵) ≤ 𝐵)
5049ad2antlr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐵)
51 simpr 488 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴)
5246, 48, 47, 50, 51lelttrd 10797 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) < 𝐴)
5346, 47, 52ltled 10787 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐴)
5453adantlr 714 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐴)
55 simplr 768 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐵) + 1))
56 flcl 13172 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘𝐵) ∈ ℤ)
57 rebtwnz 12347 . . . . . . . . 9 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
58 breq1 5056 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐵) → (𝑥𝐴 ↔ (⌊‘𝐵) ≤ 𝐴))
59 oveq1 7157 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐵) → (𝑥 + 1) = ((⌊‘𝐵) + 1))
6059breq2d 5065 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐵) → (𝐴 < (𝑥 + 1) ↔ 𝐴 < ((⌊‘𝐵) + 1)))
6158, 60anbi12d 633 . . . . . . . . . 10 (𝑥 = (⌊‘𝐵) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1))))
6261riota2 7133 . . . . . . . . 9 (((⌊‘𝐵) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6356, 57, 62syl2anr 599 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6463ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6554, 55, 64mpbi2and 711 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵))
6645, 65eqtrd 2859 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) = (⌊‘𝐵))
6749ad3antlr 730 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐵)
6866, 67eqbrtrd 5075 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) ≤ 𝐵)
6968ex 416 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
70 flle 13176 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
7170adantr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ≤ 𝐴)
727adantr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ∈ ℝ)
73 letr 10733 . . . . . . . 8 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
74733coml 1124 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
7572, 74mpd3an3 1459 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
7671, 75mpand 694 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (⌊‘𝐴) ≤ 𝐵))
7731, 76sylbird 263 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
7877adantr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (¬ 𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
7969, 78pm2.61d 182 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (⌊‘𝐴) ≤ 𝐵)
8043, 79impbida 800 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵𝐴 < ((⌊‘𝐵) + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  ∃!wreu 3135   class class class wbr 5053  cfv 6344  crio 7107  (class class class)co 7150  cr 10535  1c1 10537   + caddc 10539   < clt 10674  cle 10675  cz 11981  cfl 13167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-sup 8904  df-inf 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11898  df-z 11982  df-uz 12244  df-fl 13169
This theorem is referenced by:  itg2addnclem2  35055  hashnzfzclim  40947  fllog2  44909
  Copyright terms: Public domain W3C validator