MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flflp1 Structured version   Visualization version   GIF version

Theorem flflp1 13847
Description: Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
Assertion
Ref Expression
flflp1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵𝐴 < ((⌊‘𝐵) + 1)))

Proof of Theorem flflp1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 flltp1 13840 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21ad3antrrr 730 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐴) + 1))
3 flval 13834 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘𝐵) = (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))))
43ad3antlr 731 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) = (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))))
5 simplr 769 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) ≤ 𝐵)
61adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 < ((⌊‘𝐴) + 1))
7 reflcl 13836 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
8 peano2re 11434 . . . . . . . . . . . . . . 15 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
97, 8syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
109adantl 481 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘𝐴) + 1) ∈ ℝ)
11 lttr 11337 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
1210, 11mpd3an3 1464 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
1312ancoms 458 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
146, 13mpan2d 694 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < ((⌊‘𝐴) + 1)))
1514imp 406 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 < ((⌊‘𝐴) + 1))
1615adantlr 715 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 < ((⌊‘𝐴) + 1))
17 flcl 13835 . . . . . . . . . 10 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
18 rebtwnz 12989 . . . . . . . . . 10 (𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1)))
19 breq1 5146 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐴) → (𝑥𝐵 ↔ (⌊‘𝐴) ≤ 𝐵))
20 oveq1 7438 . . . . . . . . . . . . 13 (𝑥 = (⌊‘𝐴) → (𝑥 + 1) = ((⌊‘𝐴) + 1))
2120breq2d 5155 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐴) → (𝐵 < (𝑥 + 1) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
2219, 21anbi12d 632 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐴) → ((𝑥𝐵𝐵 < (𝑥 + 1)) ↔ ((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1))))
2322riota2 7413 . . . . . . . . . 10 (((⌊‘𝐴) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
2417, 18, 23syl2an 596 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
2524ad2antrr 726 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
265, 16, 25mpbi2and 712 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴))
274, 26eqtrd 2777 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) = (⌊‘𝐴))
2827oveq1d 7446 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → ((⌊‘𝐵) + 1) = ((⌊‘𝐴) + 1))
292, 28breqtrrd 5171 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐵) + 1))
3029ex 412 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → (𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
31 lenlt 11339 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
32 flltp1 13840 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 < ((⌊‘𝐵) + 1))
3332adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 < ((⌊‘𝐵) + 1))
34 reflcl 13836 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘𝐵) ∈ ℝ)
35 peano2re 11434 . . . . . . . . 9 ((⌊‘𝐵) ∈ ℝ → ((⌊‘𝐵) + 1) ∈ ℝ)
3634, 35syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → ((⌊‘𝐵) + 1) ∈ ℝ)
3736adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐵) + 1) ∈ ℝ)
38 lelttr 11351 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((⌊‘𝐵) + 1) ∈ ℝ) → ((𝐴𝐵𝐵 < ((⌊‘𝐵) + 1)) → 𝐴 < ((⌊‘𝐵) + 1)))
3937, 38mpd3an3 1464 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < ((⌊‘𝐵) + 1)) → 𝐴 < ((⌊‘𝐵) + 1)))
4033, 39mpan2d 694 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 < ((⌊‘𝐵) + 1)))
4131, 40sylbird 260 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
4241adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → (¬ 𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
4330, 42pm2.61d 179 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → 𝐴 < ((⌊‘𝐵) + 1))
44 flval 13834 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4544ad3antrrr 730 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4634ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ∈ ℝ)
47 simpll 767 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ)
48 simplr 769 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ)
49 flle 13839 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (⌊‘𝐵) ≤ 𝐵)
5049ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐵)
51 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴)
5246, 48, 47, 50, 51lelttrd 11419 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) < 𝐴)
5346, 47, 52ltled 11409 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐴)
5453adantlr 715 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐴)
55 simplr 769 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐵) + 1))
56 flcl 13835 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘𝐵) ∈ ℤ)
57 rebtwnz 12989 . . . . . . . . 9 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
58 breq1 5146 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐵) → (𝑥𝐴 ↔ (⌊‘𝐵) ≤ 𝐴))
59 oveq1 7438 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐵) → (𝑥 + 1) = ((⌊‘𝐵) + 1))
6059breq2d 5155 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐵) → (𝐴 < (𝑥 + 1) ↔ 𝐴 < ((⌊‘𝐵) + 1)))
6158, 60anbi12d 632 . . . . . . . . . 10 (𝑥 = (⌊‘𝐵) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1))))
6261riota2 7413 . . . . . . . . 9 (((⌊‘𝐵) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6356, 57, 62syl2anr 597 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6463ad2antrr 726 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6554, 55, 64mpbi2and 712 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵))
6645, 65eqtrd 2777 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) = (⌊‘𝐵))
6749ad3antlr 731 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐵)
6866, 67eqbrtrd 5165 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) ≤ 𝐵)
6968ex 412 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
70 flle 13839 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
7170adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ≤ 𝐴)
727adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ∈ ℝ)
73 letr 11355 . . . . . . . 8 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
74733coml 1128 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
7572, 74mpd3an3 1464 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
7671, 75mpand 695 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (⌊‘𝐴) ≤ 𝐵))
7731, 76sylbird 260 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
7877adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (¬ 𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
7969, 78pm2.61d 179 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (⌊‘𝐴) ≤ 𝐵)
8043, 79impbida 801 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵𝐴 < ((⌊‘𝐵) + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  ∃!wreu 3378   class class class wbr 5143  cfv 6561  crio 7387  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cz 12613  cfl 13830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fl 13832
This theorem is referenced by:  itg2addnclem2  37679  hashnzfzclim  44341  fllog2  48489
  Copyright terms: Public domain W3C validator