MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flflp1 Structured version   Visualization version   GIF version

Theorem flflp1 13715
Description: Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
Assertion
Ref Expression
flflp1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵𝐴 < ((⌊‘𝐵) + 1)))

Proof of Theorem flflp1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 flltp1 13708 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21ad3antrrr 730 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐴) + 1))
3 flval 13702 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘𝐵) = (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))))
43ad3antlr 731 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) = (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))))
5 simplr 768 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) ≤ 𝐵)
61adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 < ((⌊‘𝐴) + 1))
7 reflcl 13704 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
8 peano2re 11295 . . . . . . . . . . . . . . 15 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
97, 8syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
109adantl 481 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘𝐴) + 1) ∈ ℝ)
11 lttr 11198 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
1210, 11mpd3an3 1464 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
1312ancoms 458 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 < 𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
146, 13mpan2d 694 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < ((⌊‘𝐴) + 1)))
1514imp 406 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 < ((⌊‘𝐴) + 1))
1615adantlr 715 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐵 < ((⌊‘𝐴) + 1))
17 flcl 13703 . . . . . . . . . 10 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
18 rebtwnz 12849 . . . . . . . . . 10 (𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1)))
19 breq1 5098 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐴) → (𝑥𝐵 ↔ (⌊‘𝐴) ≤ 𝐵))
20 oveq1 7361 . . . . . . . . . . . . 13 (𝑥 = (⌊‘𝐴) → (𝑥 + 1) = ((⌊‘𝐴) + 1))
2120breq2d 5107 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐴) → (𝐵 < (𝑥 + 1) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
2219, 21anbi12d 632 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐴) → ((𝑥𝐵𝐵 < (𝑥 + 1)) ↔ ((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1))))
2322riota2 7336 . . . . . . . . . 10 (((⌊‘𝐴) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
2417, 18, 23syl2an 596 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
2524ad2antrr 726 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (((⌊‘𝐴) ≤ 𝐵𝐵 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴)))
265, 16, 25mpbi2and 712 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (𝑥 ∈ ℤ (𝑥𝐵𝐵 < (𝑥 + 1))) = (⌊‘𝐴))
274, 26eqtrd 2768 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) = (⌊‘𝐴))
2827oveq1d 7369 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → ((⌊‘𝐵) + 1) = ((⌊‘𝐴) + 1))
292, 28breqtrrd 5123 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐵) + 1))
3029ex 412 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → (𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
31 lenlt 11200 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
32 flltp1 13708 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 < ((⌊‘𝐵) + 1))
3332adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 < ((⌊‘𝐵) + 1))
34 reflcl 13704 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘𝐵) ∈ ℝ)
35 peano2re 11295 . . . . . . . . 9 ((⌊‘𝐵) ∈ ℝ → ((⌊‘𝐵) + 1) ∈ ℝ)
3634, 35syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → ((⌊‘𝐵) + 1) ∈ ℝ)
3736adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐵) + 1) ∈ ℝ)
38 lelttr 11212 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((⌊‘𝐵) + 1) ∈ ℝ) → ((𝐴𝐵𝐵 < ((⌊‘𝐵) + 1)) → 𝐴 < ((⌊‘𝐵) + 1)))
3937, 38mpd3an3 1464 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < ((⌊‘𝐵) + 1)) → 𝐴 < ((⌊‘𝐵) + 1)))
4033, 39mpan2d 694 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 < ((⌊‘𝐵) + 1)))
4131, 40sylbird 260 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
4241adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → (¬ 𝐵 < 𝐴𝐴 < ((⌊‘𝐵) + 1)))
4330, 42pm2.61d 179 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) ≤ 𝐵) → 𝐴 < ((⌊‘𝐵) + 1))
44 flval 13702 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4544ad3antrrr 730 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4634ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ∈ ℝ)
47 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ)
48 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ)
49 flle 13707 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (⌊‘𝐵) ≤ 𝐵)
5049ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐵)
51 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴)
5246, 48, 47, 50, 51lelttrd 11280 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) < 𝐴)
5346, 47, 52ltled 11270 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐴)
5453adantlr 715 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐴)
55 simplr 768 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → 𝐴 < ((⌊‘𝐵) + 1))
56 flcl 13703 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘𝐵) ∈ ℤ)
57 rebtwnz 12849 . . . . . . . . 9 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
58 breq1 5098 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐵) → (𝑥𝐴 ↔ (⌊‘𝐵) ≤ 𝐴))
59 oveq1 7361 . . . . . . . . . . . 12 (𝑥 = (⌊‘𝐵) → (𝑥 + 1) = ((⌊‘𝐵) + 1))
6059breq2d 5107 . . . . . . . . . . 11 (𝑥 = (⌊‘𝐵) → (𝐴 < (𝑥 + 1) ↔ 𝐴 < ((⌊‘𝐵) + 1)))
6158, 60anbi12d 632 . . . . . . . . . 10 (𝑥 = (⌊‘𝐵) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1))))
6261riota2 7336 . . . . . . . . 9 (((⌊‘𝐵) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6356, 57, 62syl2anr 597 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6463ad2antrr 726 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (((⌊‘𝐵) ≤ 𝐴𝐴 < ((⌊‘𝐵) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵)))
6554, 55, 64mpbi2and 712 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐵))
6645, 65eqtrd 2768 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) = (⌊‘𝐵))
6749ad3antlr 731 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐵) ≤ 𝐵)
6866, 67eqbrtrd 5117 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) ∧ 𝐵 < 𝐴) → (⌊‘𝐴) ≤ 𝐵)
6968ex 412 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
70 flle 13707 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
7170adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ≤ 𝐴)
727adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ∈ ℝ)
73 letr 11216 . . . . . . . 8 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
74733coml 1127 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
7572, 74mpd3an3 1464 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴𝐵) → (⌊‘𝐴) ≤ 𝐵))
7671, 75mpand 695 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (⌊‘𝐴) ≤ 𝐵))
7731, 76sylbird 260 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
7877adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (¬ 𝐵 < 𝐴 → (⌊‘𝐴) ≤ 𝐵))
7969, 78pm2.61d 179 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < ((⌊‘𝐵) + 1)) → (⌊‘𝐴) ≤ 𝐵)
8043, 79impbida 800 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) ≤ 𝐵𝐴 < ((⌊‘𝐵) + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  ∃!wreu 3345   class class class wbr 5095  cfv 6488  crio 7310  (class class class)co 7354  cr 11014  1c1 11016   + caddc 11018   < clt 11155  cle 11156  cz 12477  cfl 13698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fl 13700
This theorem is referenced by:  itg2addnclem2  37735  hashnzfzclim  44442  fllog2  48696
  Copyright terms: Public domain W3C validator