Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flbi | Structured version Visualization version GIF version |
Description: A condition equivalent to floor. (Contributed by NM, 11-Mar-2005.) (Revised by Mario Carneiro, 2-Nov-2013.) |
Ref | Expression |
---|---|
flbi | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flval 13369 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) | |
2 | 1 | eqeq1d 2739 | . . 3 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
3 | 2 | adantr 484 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
4 | rebtwnz 12543 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | |
5 | breq1 5056 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 ≤ 𝐴 ↔ 𝐵 ≤ 𝐴)) | |
6 | oveq1 7220 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 + 1) = (𝐵 + 1)) | |
7 | 6 | breq2d 5065 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴 < (𝑥 + 1) ↔ 𝐴 < (𝐵 + 1))) |
8 | 5, 7 | anbi12d 634 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) |
9 | 8 | riota2 7196 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
10 | 4, 9 | sylan2 596 | . . 3 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
11 | 10 | ancoms 462 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
12 | 3, 11 | bitr4d 285 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃!wreu 3063 class class class wbr 5053 ‘cfv 6380 ℩crio 7169 (class class class)co 7213 ℝcr 10728 1c1 10730 + caddc 10732 < clt 10867 ≤ cle 10868 ℤcz 12176 ⌊cfl 13365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fl 13367 |
This theorem is referenced by: flbi2 13392 fladdz 13400 btwnzge0 13403 bitsfzolem 15993 bitsfzo 15994 bitsmod 15995 bitscmp 15997 pcfaclem 16451 mbfi1fseqlem4 24616 dvfsumlem1 24923 fsumharmonic 25894 ppiub 26085 chpub 26101 bposlem1 26165 bposlem2 26166 ex-fl 28530 subfacval3 32864 itg2addnclem2 35566 aks4d1p1 39817 hashnzfz2 41612 oddfl 42488 halffl 42508 fourierdlem65 43387 sqrtpwpw2p 44663 flsqrt 44718 fldivexpfllog2 45584 nnlog2ge0lt1 45585 blen1b 45607 |
Copyright terms: Public domain | W3C validator |