| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmpodg | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| fmpodg.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
| fmpodg.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑆) |
| fmpodg.3 | ⊢ (𝜑 → 𝑅 = (𝐴 × 𝐵)) |
| Ref | Expression |
|---|---|
| fmpodg | ⊢ (𝜑 → 𝐹:𝑅⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpodg.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑆) | |
| 2 | 1 | ralrimivva 3175 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑆) |
| 3 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 4 | 3 | fmpo 8000 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑆 ↔ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶):(𝐴 × 𝐵)⟶𝑆) |
| 5 | 2, 4 | sylib 218 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶):(𝐴 × 𝐵)⟶𝑆) |
| 6 | fmpodg.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) | |
| 7 | fmpodg.3 | . . 3 ⊢ (𝜑 → 𝑅 = (𝐴 × 𝐵)) | |
| 8 | 6, 7 | feq12d 6639 | . 2 ⊢ (𝜑 → (𝐹:𝑅⟶𝑆 ↔ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶):(𝐴 × 𝐵)⟶𝑆)) |
| 9 | 5, 8 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹:𝑅⟶𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 × cxp 5614 ⟶wf 6477 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: fmpod 48900 fucof21 49378 |
| Copyright terms: Public domain | W3C validator |