Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmpodg Structured version   Visualization version   GIF version

Theorem fmpodg 48715
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fmpodg.1 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
fmpodg.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑆)
fmpodg.3 (𝜑𝑅 = (𝐴 × 𝐵))
Assertion
Ref Expression
fmpodg (𝜑𝐹:𝑅𝑆)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fmpodg
StepHypRef Expression
1 fmpodg.2 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑆)
21ralrimivva 3202 . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝐶𝑆)
3 eqid 2737 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
43fmpo 8101 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑆 ↔ (𝑥𝐴, 𝑦𝐵𝐶):(𝐴 × 𝐵)⟶𝑆)
52, 4sylib 218 . 2 (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶):(𝐴 × 𝐵)⟶𝑆)
6 fmpodg.1 . . 3 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
7 fmpodg.3 . . 3 (𝜑𝑅 = (𝐴 × 𝐵))
86, 7feq12d 6732 . 2 (𝜑 → (𝐹:𝑅𝑆 ↔ (𝑥𝐴, 𝑦𝐵𝐶):(𝐴 × 𝐵)⟶𝑆))
95, 8mpbird 257 1 (𝜑𝐹:𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3061   × cxp 5691  wf 6565  cmpo 7440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fv 6577  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023
This theorem is referenced by:  fmpod  48716  fucof21  48914
  Copyright terms: Public domain W3C validator