![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmpodg | Structured version Visualization version GIF version |
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.) |
Ref | Expression |
---|---|
fmpodg.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
fmpodg.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑆) |
fmpodg.3 | ⊢ (𝜑 → 𝑅 = (𝐴 × 𝐵)) |
Ref | Expression |
---|---|
fmpodg | ⊢ (𝜑 → 𝐹:𝑅⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpodg.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑆) | |
2 | 1 | ralrimivva 3202 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑆) |
3 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
4 | 3 | fmpo 8101 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑆 ↔ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶):(𝐴 × 𝐵)⟶𝑆) |
5 | 2, 4 | sylib 218 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶):(𝐴 × 𝐵)⟶𝑆) |
6 | fmpodg.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) | |
7 | fmpodg.3 | . . 3 ⊢ (𝜑 → 𝑅 = (𝐴 × 𝐵)) | |
8 | 6, 7 | feq12d 6732 | . 2 ⊢ (𝜑 → (𝐹:𝑅⟶𝑆 ↔ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶):(𝐴 × 𝐵)⟶𝑆)) |
9 | 5, 8 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹:𝑅⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 × cxp 5691 ⟶wf 6565 ∈ cmpo 7440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 |
This theorem is referenced by: fmpod 48716 fucof21 48914 |
Copyright terms: Public domain | W3C validator |