Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmpodg Structured version   Visualization version   GIF version

Theorem fmpodg 48993
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fmpodg.1 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
fmpodg.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑆)
fmpodg.3 (𝜑𝑅 = (𝐴 × 𝐵))
Assertion
Ref Expression
fmpodg (𝜑𝐹:𝑅𝑆)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fmpodg
StepHypRef Expression
1 fmpodg.2 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑆)
21ralrimivva 3176 . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝐶𝑆)
3 eqid 2733 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
43fmpo 8006 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑆 ↔ (𝑥𝐴, 𝑦𝐵𝐶):(𝐴 × 𝐵)⟶𝑆)
52, 4sylib 218 . 2 (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶):(𝐴 × 𝐵)⟶𝑆)
6 fmpodg.1 . . 3 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
7 fmpodg.3 . . 3 (𝜑𝑅 = (𝐴 × 𝐵))
86, 7feq12d 6644 . 2 (𝜑 → (𝐹:𝑅𝑆 ↔ (𝑥𝐴, 𝑦𝐵𝐶):(𝐴 × 𝐵)⟶𝑆))
95, 8mpbird 257 1 (𝜑𝐹:𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048   × cxp 5617  wf 6482  cmpo 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928
This theorem is referenced by:  fmpod  48994  fucof21  49472
  Copyright terms: Public domain W3C validator