Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmpodg Structured version   Visualization version   GIF version

Theorem fmpodg 48786
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fmpodg.1 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
fmpodg.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑆)
fmpodg.3 (𝜑𝑅 = (𝐴 × 𝐵))
Assertion
Ref Expression
fmpodg (𝜑𝐹:𝑅𝑆)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fmpodg
StepHypRef Expression
1 fmpodg.2 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑆)
21ralrimivva 3182 . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝐶𝑆)
3 eqid 2730 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
43fmpo 8056 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑆 ↔ (𝑥𝐴, 𝑦𝐵𝐶):(𝐴 × 𝐵)⟶𝑆)
52, 4sylib 218 . 2 (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶):(𝐴 × 𝐵)⟶𝑆)
6 fmpodg.1 . . 3 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
7 fmpodg.3 . . 3 (𝜑𝑅 = (𝐴 × 𝐵))
86, 7feq12d 6683 . 2 (𝜑 → (𝐹:𝑅𝑆 ↔ (𝑥𝐴, 𝑦𝐵𝐶):(𝐴 × 𝐵)⟶𝑆))
95, 8mpbird 257 1 (𝜑𝐹:𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3046   × cxp 5644  wf 6515  cmpo 7396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fv 6527  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978
This theorem is referenced by:  fmpod  48787  fucof21  49242
  Copyright terms: Public domain W3C validator