MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnelfp Structured version   Visualization version   GIF version

Theorem fnelfp 7149
Description: Property of a fixed point of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fnelfp ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑋) = 𝑋))

Proof of Theorem fnelfp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fninfp 7148 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
21eleq2d 2814 . 2 (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ 𝑋 ∈ {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥}))
3 fveq2 6858 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
4 id 22 . . . 4 (𝑥 = 𝑋𝑥 = 𝑋)
53, 4eqeq12d 2745 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑋) = 𝑋))
65elrab3 3660 . 2 (𝑋𝐴 → (𝑋 ∈ {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥} ↔ (𝐹𝑋) = 𝑋))
72, 6sylan9bb 509 1 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑋) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  cin 3913   I cid 5532  dom cdm 5638   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  nfpconfp  32556  ismrcd1  42686  ismrcd2  42687  istopclsd  42688
  Copyright terms: Public domain W3C validator