MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnelfp Structured version   Visualization version   GIF version

Theorem fnelfp 7175
Description: Property of a fixed point of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fnelfp ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑋) = 𝑋))

Proof of Theorem fnelfp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fninfp 7174 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
21eleq2d 2818 . 2 (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ 𝑋 ∈ {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥}))
3 fveq2 6891 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
4 id 22 . . . 4 (𝑥 = 𝑋𝑥 = 𝑋)
53, 4eqeq12d 2747 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑋) = 𝑋))
65elrab3 3684 . 2 (𝑋𝐴 → (𝑋 ∈ {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥} ↔ (𝐹𝑋) = 𝑋))
72, 6sylan9bb 509 1 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑋) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  {crab 3431  cin 3947   I cid 5573  dom cdm 5676   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  nfpconfp  32124  ismrcd1  41739  ismrcd2  41740  istopclsd  41741
  Copyright terms: Public domain W3C validator