| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnelfp | Structured version Visualization version GIF version | ||
| Description: Property of a fixed point of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fnelfp | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑋) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fninfp 7195 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) | |
| 2 | 1 | eleq2d 2826 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ 𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥})) |
| 3 | fveq2 6905 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 4 | id 22 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 5 | 3, 4 | eqeq12d 2752 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑋) = 𝑋)) |
| 6 | 5 | elrab3 3692 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥} ↔ (𝐹‘𝑋) = 𝑋)) |
| 7 | 2, 6 | sylan9bb 509 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑋) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3435 ∩ cin 3949 I cid 5576 dom cdm 5684 Fn wfn 6555 ‘cfv 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-res 5696 df-iota 6513 df-fun 6562 df-fn 6563 df-fv 6568 |
| This theorem is referenced by: nfpconfp 32643 ismrcd1 42714 ismrcd2 42715 istopclsd 42716 |
| Copyright terms: Public domain | W3C validator |