Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istopclsd Structured version   Visualization version   GIF version

Theorem istopclsd 41009
Description: A closure function which satisfies sscls 22407, clsidm 22418, cls0 22431, and clsun 34800 defines a (unique) topology which it is the closure function on. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
istopclsd.b (𝜑𝐵𝑉)
istopclsd.f (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
istopclsd.e ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
istopclsd.i ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
istopclsd.z (𝜑 → (𝐹‘∅) = ∅)
istopclsd.u ((𝜑𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))
istopclsd.j 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)}
Assertion
Ref Expression
istopclsd (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐽,𝑦   𝑥,𝑉,𝑦,𝑧
Allowed substitution hint:   𝐽(𝑧)

Proof of Theorem istopclsd
StepHypRef Expression
1 istopclsd.j . . . 4 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)}
2 istopclsd.f . . . . . . . . 9 (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
32ffnd 6669 . . . . . . . 8 (𝜑𝐹 Fn 𝒫 𝐵)
43adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ 𝒫 𝐵) → 𝐹 Fn 𝒫 𝐵)
5 difss 4091 . . . . . . . . 9 (𝐵𝑧) ⊆ 𝐵
6 istopclsd.b . . . . . . . . . 10 (𝜑𝐵𝑉)
7 elpw2g 5301 . . . . . . . . . 10 (𝐵𝑉 → ((𝐵𝑧) ∈ 𝒫 𝐵 ↔ (𝐵𝑧) ⊆ 𝐵))
86, 7syl 17 . . . . . . . . 9 (𝜑 → ((𝐵𝑧) ∈ 𝒫 𝐵 ↔ (𝐵𝑧) ⊆ 𝐵))
95, 8mpbiri 257 . . . . . . . 8 (𝜑 → (𝐵𝑧) ∈ 𝒫 𝐵)
109adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ 𝒫 𝐵) → (𝐵𝑧) ∈ 𝒫 𝐵)
11 fnelfp 7121 . . . . . . 7 ((𝐹 Fn 𝒫 𝐵 ∧ (𝐵𝑧) ∈ 𝒫 𝐵) → ((𝐵𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)))
124, 10, 11syl2anc 584 . . . . . 6 ((𝜑𝑧 ∈ 𝒫 𝐵) → ((𝐵𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)))
1312bicomd 222 . . . . 5 ((𝜑𝑧 ∈ 𝒫 𝐵) → ((𝐹‘(𝐵𝑧)) = (𝐵𝑧) ↔ (𝐵𝑧) ∈ dom (𝐹 ∩ I )))
1413rabbidva 3414 . . . 4 (𝜑 → {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)} = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )})
151, 14eqtrid 2788 . . 3 (𝜑𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )})
16 istopclsd.e . . . . . 6 ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
17 simp1 1136 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝑥) → 𝜑)
18 simp2 1137 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝑥) → 𝑥𝐵)
19 simp3 1138 . . . . . . . . . 10 ((𝜑𝑥𝐵𝑦𝑥) → 𝑦𝑥)
2019, 18sstrd 3954 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝑥) → 𝑦𝐵)
21 istopclsd.u . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))
2217, 18, 20, 21syl3anc 1371 . . . . . . . 8 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))
23 ssequn2 4143 . . . . . . . . . . 11 (𝑦𝑥 ↔ (𝑥𝑦) = 𝑥)
2423biimpi 215 . . . . . . . . . 10 (𝑦𝑥 → (𝑥𝑦) = 𝑥)
25243ad2ant3 1135 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝑥) → (𝑥𝑦) = 𝑥)
2625fveq2d 6846 . . . . . . . 8 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹‘(𝑥𝑦)) = (𝐹𝑥))
2722, 26eqtr3d 2778 . . . . . . 7 ((𝜑𝑥𝐵𝑦𝑥) → ((𝐹𝑥) ∪ (𝐹𝑦)) = (𝐹𝑥))
28 ssequn2 4143 . . . . . . 7 ((𝐹𝑦) ⊆ (𝐹𝑥) ↔ ((𝐹𝑥) ∪ (𝐹𝑦)) = (𝐹𝑥))
2927, 28sylibr 233 . . . . . 6 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
30 istopclsd.i . . . . . 6 ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
316, 2, 16, 29, 30ismrcd1 41007 . . . . 5 (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
32 istopclsd.z . . . . . 6 (𝜑 → (𝐹‘∅) = ∅)
33 0elpw 5311 . . . . . . 7 ∅ ∈ 𝒫 𝐵
34 fnelfp 7121 . . . . . . 7 ((𝐹 Fn 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) → (∅ ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘∅) = ∅))
353, 33, 34sylancl 586 . . . . . 6 (𝜑 → (∅ ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘∅) = ∅))
3632, 35mpbird 256 . . . . 5 (𝜑 → ∅ ∈ dom (𝐹 ∩ I ))
37 simp1 1136 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝜑)
38 inss1 4188 . . . . . . . . . . . . 13 (𝐹 ∩ I ) ⊆ 𝐹
39 dmss 5858 . . . . . . . . . . . . 13 ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹)
4038, 39ax-mp 5 . . . . . . . . . . . 12 dom (𝐹 ∩ I ) ⊆ dom 𝐹
4140, 2fssdm 6688 . . . . . . . . . . 11 (𝜑 → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
42413ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
43 simp2 1137 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑥 ∈ dom (𝐹 ∩ I ))
4442, 43sseldd 3945 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑥 ∈ 𝒫 𝐵)
4544elpwid 4569 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑥𝐵)
46 simp3 1138 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑦 ∈ dom (𝐹 ∩ I ))
4742, 46sseldd 3945 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑦 ∈ 𝒫 𝐵)
4847elpwid 4569 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑦𝐵)
4937, 45, 48, 21syl3anc 1371 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))
5033ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝐹 Fn 𝒫 𝐵)
51 fnelfp 7121 . . . . . . . . . 10 ((𝐹 Fn 𝒫 𝐵𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
5250, 44, 51syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
5343, 52mpbid 231 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹𝑥) = 𝑥)
54 fnelfp 7121 . . . . . . . . . 10 ((𝐹 Fn 𝒫 𝐵𝑦 ∈ 𝒫 𝐵) → (𝑦 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑦) = 𝑦))
5550, 47, 54syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑦 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑦) = 𝑦))
5646, 55mpbid 231 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹𝑦) = 𝑦)
5753, 56uneq12d 4124 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → ((𝐹𝑥) ∪ (𝐹𝑦)) = (𝑥𝑦))
5849, 57eqtrd 2776 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹‘(𝑥𝑦)) = (𝑥𝑦))
5945, 48unssd 4146 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥𝑦) ⊆ 𝐵)
60 vex 3449 . . . . . . . . . 10 𝑥 ∈ V
61 vex 3449 . . . . . . . . . 10 𝑦 ∈ V
6260, 61unex 7680 . . . . . . . . 9 (𝑥𝑦) ∈ V
6362elpw 4564 . . . . . . . 8 ((𝑥𝑦) ∈ 𝒫 𝐵 ↔ (𝑥𝑦) ⊆ 𝐵)
6459, 63sylibr 233 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥𝑦) ∈ 𝒫 𝐵)
65 fnelfp 7121 . . . . . . 7 ((𝐹 Fn 𝒫 𝐵 ∧ (𝑥𝑦) ∈ 𝒫 𝐵) → ((𝑥𝑦) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝑥𝑦)) = (𝑥𝑦)))
6650, 64, 65syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → ((𝑥𝑦) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝑥𝑦)) = (𝑥𝑦)))
6758, 66mpbird 256 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥𝑦) ∈ dom (𝐹 ∩ I ))
68 eqid 2736 . . . . 5 {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )} = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )}
6931, 36, 67, 68mretopd 22443 . . . 4 (𝜑 → ({𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )} ∈ (TopOn‘𝐵) ∧ dom (𝐹 ∩ I ) = (Clsd‘{𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )})))
7069simpld 495 . . 3 (𝜑 → {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )} ∈ (TopOn‘𝐵))
7115, 70eqeltrd 2838 . 2 (𝜑𝐽 ∈ (TopOn‘𝐵))
72 topontop 22262 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
7371, 72syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
74 eqid 2736 . . . . . 6 (mrCls‘(Clsd‘𝐽)) = (mrCls‘(Clsd‘𝐽))
7574mrccls 22430 . . . . 5 (𝐽 ∈ Top → (cls‘𝐽) = (mrCls‘(Clsd‘𝐽)))
7673, 75syl 17 . . . 4 (𝜑 → (cls‘𝐽) = (mrCls‘(Clsd‘𝐽)))
7769simprd 496 . . . . . 6 (𝜑 → dom (𝐹 ∩ I ) = (Clsd‘{𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )}))
7815fveq2d 6846 . . . . . 6 (𝜑 → (Clsd‘𝐽) = (Clsd‘{𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )}))
7977, 78eqtr4d 2779 . . . . 5 (𝜑 → dom (𝐹 ∩ I ) = (Clsd‘𝐽))
8079fveq2d 6846 . . . 4 (𝜑 → (mrCls‘dom (𝐹 ∩ I )) = (mrCls‘(Clsd‘𝐽)))
8176, 80eqtr4d 2779 . . 3 (𝜑 → (cls‘𝐽) = (mrCls‘dom (𝐹 ∩ I )))
826, 2, 16, 29, 30ismrcd2 41008 . . 3 (𝜑𝐹 = (mrCls‘dom (𝐹 ∩ I )))
8381, 82eqtr4d 2779 . 2 (𝜑 → (cls‘𝐽) = 𝐹)
8471, 83jca 512 1 (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {crab 3407  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560   I cid 5530  dom cdm 5633   Fn wfn 6491  wf 6492  cfv 6496  mrClscmrc 17463  Topctop 22242  TopOnctopon 22259  Clsdccld 22367  clsccl 22369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-mre 17466  df-mrc 17467  df-top 22243  df-topon 22260  df-cld 22370  df-cls 22372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator