Proof of Theorem istopclsd
Step | Hyp | Ref
| Expression |
1 | | istopclsd.j |
. . . 4
⊢ 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵 ∖ 𝑧)) = (𝐵 ∖ 𝑧)} |
2 | | istopclsd.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) |
3 | 2 | ffnd 6546 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn 𝒫 𝐵) |
4 | 3 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → 𝐹 Fn 𝒫 𝐵) |
5 | | difss 4046 |
. . . . . . . . 9
⊢ (𝐵 ∖ 𝑧) ⊆ 𝐵 |
6 | | istopclsd.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
7 | | elpw2g 5237 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑉 → ((𝐵 ∖ 𝑧) ∈ 𝒫 𝐵 ↔ (𝐵 ∖ 𝑧) ⊆ 𝐵)) |
8 | 6, 7 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐵 ∖ 𝑧) ∈ 𝒫 𝐵 ↔ (𝐵 ∖ 𝑧) ⊆ 𝐵)) |
9 | 5, 8 | mpbiri 261 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ∖ 𝑧) ∈ 𝒫 𝐵) |
10 | 9 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑧) ∈ 𝒫 𝐵) |
11 | | fnelfp 6990 |
. . . . . . 7
⊢ ((𝐹 Fn 𝒫 𝐵 ∧ (𝐵 ∖ 𝑧) ∈ 𝒫 𝐵) → ((𝐵 ∖ 𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐵 ∖ 𝑧)) = (𝐵 ∖ 𝑧))) |
12 | 4, 10, 11 | syl2anc 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((𝐵 ∖ 𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐵 ∖ 𝑧)) = (𝐵 ∖ 𝑧))) |
13 | 12 | bicomd 226 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((𝐹‘(𝐵 ∖ 𝑧)) = (𝐵 ∖ 𝑧) ↔ (𝐵 ∖ 𝑧) ∈ dom (𝐹 ∩ I ))) |
14 | 13 | rabbidva 3388 |
. . . 4
⊢ (𝜑 → {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵 ∖ 𝑧)) = (𝐵 ∖ 𝑧)} = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ dom (𝐹 ∩ I )}) |
15 | 1, 14 | syl5eq 2790 |
. . 3
⊢ (𝜑 → 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ dom (𝐹 ∩ I )}) |
16 | | istopclsd.e |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) |
17 | | simp1 1138 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → 𝜑) |
18 | | simp2 1139 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → 𝑥 ⊆ 𝐵) |
19 | | simp3 1140 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → 𝑦 ⊆ 𝑥) |
20 | 19, 18 | sstrd 3911 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → 𝑦 ⊆ 𝐵) |
21 | | istopclsd.u |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → (𝐹‘(𝑥 ∪ 𝑦)) = ((𝐹‘𝑥) ∪ (𝐹‘𝑦))) |
22 | 17, 18, 20, 21 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘(𝑥 ∪ 𝑦)) = ((𝐹‘𝑥) ∪ (𝐹‘𝑦))) |
23 | | ssequn2 4097 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ 𝑥 ↔ (𝑥 ∪ 𝑦) = 𝑥) |
24 | 23 | biimpi 219 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝑥 → (𝑥 ∪ 𝑦) = 𝑥) |
25 | 24 | 3ad2ant3 1137 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ∪ 𝑦) = 𝑥) |
26 | 25 | fveq2d 6721 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘(𝑥 ∪ 𝑦)) = (𝐹‘𝑥)) |
27 | 22, 26 | eqtr3d 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → ((𝐹‘𝑥) ∪ (𝐹‘𝑦)) = (𝐹‘𝑥)) |
28 | | ssequn2 4097 |
. . . . . . 7
⊢ ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) ∪ (𝐹‘𝑦)) = (𝐹‘𝑥)) |
29 | 27, 28 | sylibr 237 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) |
30 | | istopclsd.i |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) |
31 | 6, 2, 16, 29, 30 | ismrcd1 40223 |
. . . . 5
⊢ (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵)) |
32 | | istopclsd.z |
. . . . . 6
⊢ (𝜑 → (𝐹‘∅) = ∅) |
33 | | 0elpw 5247 |
. . . . . . 7
⊢ ∅
∈ 𝒫 𝐵 |
34 | | fnelfp 6990 |
. . . . . . 7
⊢ ((𝐹 Fn 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) → (∅ ∈ dom
(𝐹 ∩ I ) ↔ (𝐹‘∅) =
∅)) |
35 | 3, 33, 34 | sylancl 589 |
. . . . . 6
⊢ (𝜑 → (∅ ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘∅) =
∅)) |
36 | 32, 35 | mpbird 260 |
. . . . 5
⊢ (𝜑 → ∅ ∈ dom (𝐹 ∩ I )) |
37 | | simp1 1138 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝜑) |
38 | | inss1 4143 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∩ I ) ⊆ 𝐹 |
39 | | dmss 5771 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹) |
40 | 38, 39 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ dom
(𝐹 ∩ I ) ⊆ dom
𝐹 |
41 | 40, 2 | fssdm 6565 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵) |
42 | 41 | 3ad2ant1 1135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵) |
43 | | simp2 1139 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑥 ∈ dom (𝐹 ∩ I )) |
44 | 42, 43 | sseldd 3902 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑥 ∈ 𝒫 𝐵) |
45 | 44 | elpwid 4524 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑥 ⊆ 𝐵) |
46 | | simp3 1140 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑦 ∈ dom (𝐹 ∩ I )) |
47 | 42, 46 | sseldd 3902 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑦 ∈ 𝒫 𝐵) |
48 | 47 | elpwid 4524 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑦 ⊆ 𝐵) |
49 | 37, 45, 48, 21 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹‘(𝑥 ∪ 𝑦)) = ((𝐹‘𝑥) ∪ (𝐹‘𝑦))) |
50 | 3 | 3ad2ant1 1135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝐹 Fn 𝒫 𝐵) |
51 | | fnelfp 6990 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝒫 𝐵 ∧ 𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑥) = 𝑥)) |
52 | 50, 44, 51 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑥) = 𝑥)) |
53 | 43, 52 | mpbid 235 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹‘𝑥) = 𝑥) |
54 | | fnelfp 6990 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝒫 𝐵 ∧ 𝑦 ∈ 𝒫 𝐵) → (𝑦 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑦) = 𝑦)) |
55 | 50, 47, 54 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑦 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑦) = 𝑦)) |
56 | 46, 55 | mpbid 235 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹‘𝑦) = 𝑦) |
57 | 53, 56 | uneq12d 4078 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → ((𝐹‘𝑥) ∪ (𝐹‘𝑦)) = (𝑥 ∪ 𝑦)) |
58 | 49, 57 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹‘(𝑥 ∪ 𝑦)) = (𝑥 ∪ 𝑦)) |
59 | 45, 48 | unssd 4100 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥 ∪ 𝑦) ⊆ 𝐵) |
60 | | vex 3412 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
61 | | vex 3412 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
62 | 60, 61 | unex 7531 |
. . . . . . . . 9
⊢ (𝑥 ∪ 𝑦) ∈ V |
63 | 62 | elpw 4517 |
. . . . . . . 8
⊢ ((𝑥 ∪ 𝑦) ∈ 𝒫 𝐵 ↔ (𝑥 ∪ 𝑦) ⊆ 𝐵) |
64 | 59, 63 | sylibr 237 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥 ∪ 𝑦) ∈ 𝒫 𝐵) |
65 | | fnelfp 6990 |
. . . . . . 7
⊢ ((𝐹 Fn 𝒫 𝐵 ∧ (𝑥 ∪ 𝑦) ∈ 𝒫 𝐵) → ((𝑥 ∪ 𝑦) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝑥 ∪ 𝑦)) = (𝑥 ∪ 𝑦))) |
66 | 50, 64, 65 | syl2anc 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → ((𝑥 ∪ 𝑦) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝑥 ∪ 𝑦)) = (𝑥 ∪ 𝑦))) |
67 | 58, 66 | mpbird 260 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥 ∪ 𝑦) ∈ dom (𝐹 ∩ I )) |
68 | | eqid 2737 |
. . . . 5
⊢ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ dom (𝐹 ∩ I )} = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ dom (𝐹 ∩ I )} |
69 | 31, 36, 67, 68 | mretopd 21989 |
. . . 4
⊢ (𝜑 → ({𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ dom (𝐹 ∩ I )} ∈ (TopOn‘𝐵) ∧ dom (𝐹 ∩ I ) = (Clsd‘{𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ dom (𝐹 ∩ I )}))) |
70 | 69 | simpld 498 |
. . 3
⊢ (𝜑 → {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ dom (𝐹 ∩ I )} ∈ (TopOn‘𝐵)) |
71 | 15, 70 | eqeltrd 2838 |
. 2
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) |
72 | | topontop 21810 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
73 | 71, 72 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Top) |
74 | | eqid 2737 |
. . . . . 6
⊢
(mrCls‘(Clsd‘𝐽)) = (mrCls‘(Clsd‘𝐽)) |
75 | 74 | mrccls 21976 |
. . . . 5
⊢ (𝐽 ∈ Top →
(cls‘𝐽) =
(mrCls‘(Clsd‘𝐽))) |
76 | 73, 75 | syl 17 |
. . . 4
⊢ (𝜑 → (cls‘𝐽) =
(mrCls‘(Clsd‘𝐽))) |
77 | 69 | simprd 499 |
. . . . . 6
⊢ (𝜑 → dom (𝐹 ∩ I ) = (Clsd‘{𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ dom (𝐹 ∩ I )})) |
78 | 15 | fveq2d 6721 |
. . . . . 6
⊢ (𝜑 → (Clsd‘𝐽) = (Clsd‘{𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ dom (𝐹 ∩ I )})) |
79 | 77, 78 | eqtr4d 2780 |
. . . . 5
⊢ (𝜑 → dom (𝐹 ∩ I ) = (Clsd‘𝐽)) |
80 | 79 | fveq2d 6721 |
. . . 4
⊢ (𝜑 → (mrCls‘dom (𝐹 ∩ I )) =
(mrCls‘(Clsd‘𝐽))) |
81 | 76, 80 | eqtr4d 2780 |
. . 3
⊢ (𝜑 → (cls‘𝐽) = (mrCls‘dom (𝐹 ∩ I ))) |
82 | 6, 2, 16, 29, 30 | ismrcd2 40224 |
. . 3
⊢ (𝜑 → 𝐹 = (mrCls‘dom (𝐹 ∩ I ))) |
83 | 81, 82 | eqtr4d 2780 |
. 2
⊢ (𝜑 → (cls‘𝐽) = 𝐹) |
84 | 71, 83 | jca 515 |
1
⊢ (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹)) |