Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfpconfp | Structured version Visualization version GIF version |
Description: The set of fixed points of 𝐹 is the complement of the set of points moved by 𝐹. (Contributed by Thierry Arnoux, 17-Nov-2023.) |
Ref | Expression |
---|---|
nfpconfp | ⊢ (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3897 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I ))) | |
2 | fnelfp 7047 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑥) = 𝑥)) | |
3 | 2 | pm5.32da 579 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom (𝐹 ∩ I )) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑥))) |
4 | inss1 4162 | . . . . . . . 8 ⊢ (𝐹 ∩ I ) ⊆ 𝐹 | |
5 | dmss 5811 | . . . . . . . 8 ⊢ ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝐹 ∩ I ) ⊆ dom 𝐹 |
7 | fndm 6536 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
8 | 6, 7 | sseqtrid 3973 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) ⊆ 𝐴) |
9 | 8 | sseld 3920 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) → 𝑥 ∈ 𝐴)) |
10 | 9 | pm4.71rd 563 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom (𝐹 ∩ I )))) |
11 | fnelnfp 7049 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) | |
12 | 11 | notbid 318 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ ¬ (𝐹‘𝑥) ≠ 𝑥)) |
13 | nne 2947 | . . . . . 6 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = 𝑥) | |
14 | 12, 13 | bitrdi 287 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) = 𝑥)) |
15 | 14 | pm5.32da 579 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑥))) |
16 | 3, 10, 15 | 3bitr4rd 312 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I ))) |
17 | 1, 16 | syl5bb 283 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I ))) |
18 | 17 | eqrdv 2736 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 I cid 5488 dom cdm 5589 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 |
This theorem is referenced by: symgcom2 31353 |
Copyright terms: Public domain | W3C validator |