Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfpconfp Structured version   Visualization version   GIF version

Theorem nfpconfp 32563
Description: The set of fixed points of 𝐹 is the complement of the set of points moved by 𝐹. (Contributed by Thierry Arnoux, 17-Nov-2023.)
Assertion
Ref Expression
nfpconfp (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I ))

Proof of Theorem nfpconfp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3927 . . 3 (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )))
2 fnelfp 7152 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
32pm5.32da 579 . . . 4 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑥 ∈ dom (𝐹 ∩ I )) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑥)))
4 inss1 4203 . . . . . . . 8 (𝐹 ∩ I ) ⊆ 𝐹
5 dmss 5869 . . . . . . . 8 ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹)
64, 5ax-mp 5 . . . . . . 7 dom (𝐹 ∩ I ) ⊆ dom 𝐹
7 fndm 6624 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
86, 7sseqtrid 3992 . . . . . 6 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) ⊆ 𝐴)
98sseld 3948 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) → 𝑥𝐴))
109pm4.71rd 562 . . . 4 (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝑥𝐴𝑥 ∈ dom (𝐹 ∩ I ))))
11 fnelnfp 7154 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
1211notbid 318 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ ¬ (𝐹𝑥) ≠ 𝑥))
13 nne 2930 . . . . . 6 (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = 𝑥)
1412, 13bitrdi 287 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) = 𝑥))
1514pm5.32da 579 . . . 4 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑥)))
163, 10, 153bitr4rd 312 . . 3 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I )))
171, 16bitrid 283 . 2 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I )))
1817eqrdv 2728 1 (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  cin 3916  wss 3917   I cid 5535  dom cdm 5641   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522
This theorem is referenced by:  symgcom2  33048
  Copyright terms: Public domain W3C validator