![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfpconfp | Structured version Visualization version GIF version |
Description: The set of fixed points of 𝐹 is the complement of the set of points moved by 𝐹. (Contributed by Thierry Arnoux, 17-Nov-2023.) |
Ref | Expression |
---|---|
nfpconfp | ⊢ (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3958 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I ))) | |
2 | fnelfp 7175 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑥) = 𝑥)) | |
3 | 2 | pm5.32da 578 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom (𝐹 ∩ I )) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑥))) |
4 | inss1 4228 | . . . . . . . 8 ⊢ (𝐹 ∩ I ) ⊆ 𝐹 | |
5 | dmss 5902 | . . . . . . . 8 ⊢ ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝐹 ∩ I ) ⊆ dom 𝐹 |
7 | fndm 6652 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
8 | 6, 7 | sseqtrid 4034 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) ⊆ 𝐴) |
9 | 8 | sseld 3981 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) → 𝑥 ∈ 𝐴)) |
10 | 9 | pm4.71rd 562 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom (𝐹 ∩ I )))) |
11 | fnelnfp 7177 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) | |
12 | 11 | notbid 318 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ ¬ (𝐹‘𝑥) ≠ 𝑥)) |
13 | nne 2943 | . . . . . 6 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = 𝑥) | |
14 | 12, 13 | bitrdi 287 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) = 𝑥)) |
15 | 14 | pm5.32da 578 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑥))) |
16 | 3, 10, 15 | 3bitr4rd 312 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I ))) |
17 | 1, 16 | bitrid 283 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I ))) |
18 | 17 | eqrdv 2729 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∖ cdif 3945 ∩ cin 3947 ⊆ wss 3948 I cid 5573 dom cdm 5676 Fn wfn 6538 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 |
This theorem is referenced by: symgcom2 32516 |
Copyright terms: Public domain | W3C validator |