Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfpconfp Structured version   Visualization version   GIF version

Theorem nfpconfp 30967
Description: The set of fixed points of 𝐹 is the complement of the set of points moved by 𝐹. (Contributed by Thierry Arnoux, 17-Nov-2023.)
Assertion
Ref Expression
nfpconfp (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I ))

Proof of Theorem nfpconfp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3897 . . 3 (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )))
2 fnelfp 7047 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
32pm5.32da 579 . . . 4 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑥 ∈ dom (𝐹 ∩ I )) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑥)))
4 inss1 4162 . . . . . . . 8 (𝐹 ∩ I ) ⊆ 𝐹
5 dmss 5811 . . . . . . . 8 ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹)
64, 5ax-mp 5 . . . . . . 7 dom (𝐹 ∩ I ) ⊆ dom 𝐹
7 fndm 6536 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
86, 7sseqtrid 3973 . . . . . 6 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) ⊆ 𝐴)
98sseld 3920 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) → 𝑥𝐴))
109pm4.71rd 563 . . . 4 (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝑥𝐴𝑥 ∈ dom (𝐹 ∩ I ))))
11 fnelnfp 7049 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
1211notbid 318 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ ¬ (𝐹𝑥) ≠ 𝑥))
13 nne 2947 . . . . . 6 (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = 𝑥)
1412, 13bitrdi 287 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) = 𝑥))
1514pm5.32da 579 . . . 4 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑥)))
163, 10, 153bitr4rd 312 . . 3 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I )))
171, 16syl5bb 283 . 2 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I )))
1817eqrdv 2736 1 (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  cin 3886  wss 3887   I cid 5488  dom cdm 5589   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  symgcom2  31353
  Copyright terms: Public domain W3C validator