| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfpconfp | Structured version Visualization version GIF version | ||
| Description: The set of fixed points of 𝐹 is the complement of the set of points moved by 𝐹. (Contributed by Thierry Arnoux, 17-Nov-2023.) |
| Ref | Expression |
|---|---|
| nfpconfp | ⊢ (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3936 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I ))) | |
| 2 | fnelfp 7167 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑥) = 𝑥)) | |
| 3 | 2 | pm5.32da 579 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom (𝐹 ∩ I )) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑥))) |
| 4 | inss1 4212 | . . . . . . . 8 ⊢ (𝐹 ∩ I ) ⊆ 𝐹 | |
| 5 | dmss 5882 | . . . . . . . 8 ⊢ ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝐹 ∩ I ) ⊆ dom 𝐹 |
| 7 | fndm 6641 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 8 | 6, 7 | sseqtrid 4001 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) ⊆ 𝐴) |
| 9 | 8 | sseld 3957 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) → 𝑥 ∈ 𝐴)) |
| 10 | 9 | pm4.71rd 562 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom (𝐹 ∩ I )))) |
| 11 | fnelnfp 7169 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) | |
| 12 | 11 | notbid 318 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ ¬ (𝐹‘𝑥) ≠ 𝑥)) |
| 13 | nne 2936 | . . . . . 6 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = 𝑥) | |
| 14 | 12, 13 | bitrdi 287 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) = 𝑥)) |
| 15 | 14 | pm5.32da 579 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑥))) |
| 16 | 3, 10, 15 | 3bitr4rd 312 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I ))) |
| 17 | 1, 16 | bitrid 283 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I ))) |
| 18 | 17 | eqrdv 2733 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 I cid 5547 dom cdm 5654 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 |
| This theorem is referenced by: symgcom2 33095 |
| Copyright terms: Public domain | W3C validator |