Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfpconfp Structured version   Visualization version   GIF version

Theorem nfpconfp 32636
Description: The set of fixed points of 𝐹 is the complement of the set of points moved by 𝐹. (Contributed by Thierry Arnoux, 17-Nov-2023.)
Assertion
Ref Expression
nfpconfp (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I ))

Proof of Theorem nfpconfp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3908 . . 3 (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )))
2 fnelfp 7118 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
32pm5.32da 579 . . . 4 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑥 ∈ dom (𝐹 ∩ I )) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑥)))
4 inss1 4186 . . . . . . . 8 (𝐹 ∩ I ) ⊆ 𝐹
5 dmss 5848 . . . . . . . 8 ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹)
64, 5ax-mp 5 . . . . . . 7 dom (𝐹 ∩ I ) ⊆ dom 𝐹
7 fndm 6592 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
86, 7sseqtrid 3973 . . . . . 6 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) ⊆ 𝐴)
98sseld 3929 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) → 𝑥𝐴))
109pm4.71rd 562 . . . 4 (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝑥𝐴𝑥 ∈ dom (𝐹 ∩ I ))))
11 fnelnfp 7120 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
1211notbid 318 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ ¬ (𝐹𝑥) ≠ 𝑥))
13 nne 2933 . . . . . 6 (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = 𝑥)
1412, 13bitrdi 287 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) = 𝑥))
1514pm5.32da 579 . . . 4 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑥)))
163, 10, 153bitr4rd 312 . . 3 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I )))
171, 16bitrid 283 . 2 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I )))
1817eqrdv 2731 1 (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cdif 3895  cin 3897  wss 3898   I cid 5515  dom cdm 5621   Fn wfn 6484  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497
This theorem is referenced by:  symgcom2  33094
  Copyright terms: Public domain W3C validator