![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfpconfp | Structured version Visualization version GIF version |
Description: The set of fixed points of 𝐹 is the complement of the set of points moved by 𝐹. (Contributed by Thierry Arnoux, 17-Nov-2023.) |
Ref | Expression |
---|---|
nfpconfp | ⊢ (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3972 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I ))) | |
2 | fnelfp 7194 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑥) = 𝑥)) | |
3 | 2 | pm5.32da 579 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom (𝐹 ∩ I )) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑥))) |
4 | inss1 4244 | . . . . . . . 8 ⊢ (𝐹 ∩ I ) ⊆ 𝐹 | |
5 | dmss 5915 | . . . . . . . 8 ⊢ ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝐹 ∩ I ) ⊆ dom 𝐹 |
7 | fndm 6671 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
8 | 6, 7 | sseqtrid 4047 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) ⊆ 𝐴) |
9 | 8 | sseld 3993 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) → 𝑥 ∈ 𝐴)) |
10 | 9 | pm4.71rd 562 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom (𝐹 ∩ I )))) |
11 | fnelnfp 7196 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) | |
12 | 11 | notbid 318 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ ¬ (𝐹‘𝑥) ≠ 𝑥)) |
13 | nne 2941 | . . . . . 6 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = 𝑥) | |
14 | 12, 13 | bitrdi 287 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) = 𝑥)) |
15 | 14 | pm5.32da 579 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑥))) |
16 | 3, 10, 15 | 3bitr4rd 312 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I ))) |
17 | 1, 16 | bitrid 283 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I ))) |
18 | 17 | eqrdv 2732 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∖ cdif 3959 ∩ cin 3961 ⊆ wss 3962 I cid 5581 dom cdm 5688 Fn wfn 6557 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 |
This theorem is referenced by: symgcom2 33086 |
Copyright terms: Public domain | W3C validator |