Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfpconfp Structured version   Visualization version   GIF version

Theorem nfpconfp 32529
Description: The set of fixed points of 𝐹 is the complement of the set of points moved by 𝐹. (Contributed by Thierry Arnoux, 17-Nov-2023.)
Assertion
Ref Expression
nfpconfp (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I ))

Proof of Theorem nfpconfp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3921 . . 3 (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )))
2 fnelfp 7131 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
32pm5.32da 579 . . . 4 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑥 ∈ dom (𝐹 ∩ I )) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑥)))
4 inss1 4196 . . . . . . . 8 (𝐹 ∩ I ) ⊆ 𝐹
5 dmss 5856 . . . . . . . 8 ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹)
64, 5ax-mp 5 . . . . . . 7 dom (𝐹 ∩ I ) ⊆ dom 𝐹
7 fndm 6603 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
86, 7sseqtrid 3986 . . . . . 6 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) ⊆ 𝐴)
98sseld 3942 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) → 𝑥𝐴))
109pm4.71rd 562 . . . 4 (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝑥𝐴𝑥 ∈ dom (𝐹 ∩ I ))))
11 fnelnfp 7133 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
1211notbid 318 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ ¬ (𝐹𝑥) ≠ 𝑥))
13 nne 2929 . . . . . 6 (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = 𝑥)
1412, 13bitrdi 287 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) = 𝑥))
1514pm5.32da 579 . . . 4 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑥)))
163, 10, 153bitr4rd 312 . . 3 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I )))
171, 16bitrid 283 . 2 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I )))
1817eqrdv 2727 1 (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3908  cin 3910  wss 3911   I cid 5525  dom cdm 5631   Fn wfn 6494  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507
This theorem is referenced by:  symgcom2  33014
  Copyright terms: Public domain W3C validator