Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfpconfp Structured version   Visualization version   GIF version

Theorem nfpconfp 32124
Description: The set of fixed points of 𝐹 is the complement of the set of points moved by 𝐹. (Contributed by Thierry Arnoux, 17-Nov-2023.)
Assertion
Ref Expression
nfpconfp (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I ))

Proof of Theorem nfpconfp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3958 . . 3 (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )))
2 fnelfp 7175 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
32pm5.32da 578 . . . 4 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑥 ∈ dom (𝐹 ∩ I )) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑥)))
4 inss1 4228 . . . . . . . 8 (𝐹 ∩ I ) ⊆ 𝐹
5 dmss 5902 . . . . . . . 8 ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹)
64, 5ax-mp 5 . . . . . . 7 dom (𝐹 ∩ I ) ⊆ dom 𝐹
7 fndm 6652 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
86, 7sseqtrid 4034 . . . . . 6 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) ⊆ 𝐴)
98sseld 3981 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) → 𝑥𝐴))
109pm4.71rd 562 . . . 4 (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝑥𝐴𝑥 ∈ dom (𝐹 ∩ I ))))
11 fnelnfp 7177 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
1211notbid 318 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ ¬ (𝐹𝑥) ≠ 𝑥))
13 nne 2943 . . . . . 6 (¬ (𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) = 𝑥)
1412, 13bitrdi 287 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) = 𝑥))
1514pm5.32da 578 . . . 4 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 𝑥)))
163, 10, 153bitr4rd 312 . . 3 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I )))
171, 16bitrid 283 . 2 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I )))
1817eqrdv 2729 1 (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  cdif 3945  cin 3947  wss 3948   I cid 5573  dom cdm 5676   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551
This theorem is referenced by:  symgcom2  32516
  Copyright terms: Public domain W3C validator