Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfpconfp | Structured version Visualization version GIF version |
Description: The set of fixed points of 𝐹 is the complement of the set of points moved by 𝐹. (Contributed by Thierry Arnoux, 17-Nov-2023.) |
Ref | Expression |
---|---|
nfpconfp | ⊢ (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3868 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I ))) | |
2 | fnelfp 6928 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑥) = 𝑥)) | |
3 | 2 | pm5.32da 582 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom (𝐹 ∩ I )) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑥))) |
4 | inss1 4133 | . . . . . . . 8 ⊢ (𝐹 ∩ I ) ⊆ 𝐹 | |
5 | dmss 5742 | . . . . . . . 8 ⊢ ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ dom (𝐹 ∩ I ) ⊆ dom 𝐹 |
7 | fndm 6436 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
8 | 6, 7 | sseqtrid 3944 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) ⊆ 𝐴) |
9 | 8 | sseld 3891 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) → 𝑥 ∈ 𝐴)) |
10 | 9 | pm4.71rd 566 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom (𝐹 ∩ I )))) |
11 | fnelnfp 6930 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) | |
12 | 11 | notbid 321 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ ¬ (𝐹‘𝑥) ≠ 𝑥)) |
13 | nne 2955 | . . . . . 6 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) = 𝑥) | |
14 | 12, 13 | bitrdi 290 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) = 𝑥)) |
15 | 14 | pm5.32da 582 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑥))) |
16 | 3, 10, 15 | 3bitr4rd 315 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I ))) |
17 | 1, 16 | syl5bb 286 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐴 ∖ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ dom (𝐹 ∩ I ))) |
18 | 17 | eqrdv 2756 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐴 ∖ dom (𝐹 ∖ I )) = dom (𝐹 ∩ I )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∖ cdif 3855 ∩ cin 3857 ⊆ wss 3858 I cid 5429 dom cdm 5524 Fn wfn 6330 ‘cfv 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 |
This theorem is referenced by: symgcom2 30879 |
Copyright terms: Public domain | W3C validator |