MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimatpd Structured version   Visualization version   GIF version

Theorem fnimatpd 7006
Description: The image of an unordered triple under a function. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
fnimatpd.1 (𝜑𝐹 Fn 𝐷)
fnimatpd.2 (𝜑𝐴𝐷)
fnimatpd.3 (𝜑𝐵𝐷)
fnimatpd.4 (𝜑𝐶𝐷)
Assertion
Ref Expression
fnimatpd (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹𝐴), (𝐹𝐵), (𝐹𝐶)})

Proof of Theorem fnimatpd
StepHypRef Expression
1 fnimatpd.1 . . . 4 (𝜑𝐹 Fn 𝐷)
2 fnimatpd.2 . . . 4 (𝜑𝐴𝐷)
3 fnimatpd.3 . . . 4 (𝜑𝐵𝐷)
4 fnimapr 7005 . . . 4 ((𝐹 Fn 𝐷𝐴𝐷𝐵𝐷) → (𝐹 “ {𝐴, 𝐵}) = {(𝐹𝐴), (𝐹𝐵)})
51, 2, 3, 4syl3anc 1371 . . 3 (𝜑 → (𝐹 “ {𝐴, 𝐵}) = {(𝐹𝐴), (𝐹𝐵)})
6 fnimatpd.4 . . . . 5 (𝜑𝐶𝐷)
7 fnsnfv 7001 . . . . 5 ((𝐹 Fn 𝐷𝐶𝐷) → {(𝐹𝐶)} = (𝐹 “ {𝐶}))
81, 6, 7syl2anc 583 . . . 4 (𝜑 → {(𝐹𝐶)} = (𝐹 “ {𝐶}))
98eqcomd 2746 . . 3 (𝜑 → (𝐹 “ {𝐶}) = {(𝐹𝐶)})
105, 9uneq12d 4192 . 2 (𝜑 → ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹𝐴), (𝐹𝐵)} ∪ {(𝐹𝐶)}))
11 df-tp 4653 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
1211imaeq2i 6087 . . 3 (𝐹 “ {𝐴, 𝐵, 𝐶}) = (𝐹 “ ({𝐴, 𝐵} ∪ {𝐶}))
13 imaundi 6181 . . 3 (𝐹 “ ({𝐴, 𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶}))
1412, 13eqtri 2768 . 2 (𝐹 “ {𝐴, 𝐵, 𝐶}) = ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶}))
15 df-tp 4653 . 2 {(𝐹𝐴), (𝐹𝐵), (𝐹𝐶)} = ({(𝐹𝐴), (𝐹𝐵)} ∪ {(𝐹𝐶)})
1610, 14, 153eqtr4g 2805 1 (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹𝐴), (𝐹𝐵), (𝐹𝐶)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cun 3974  {csn 4648  {cpr 4650  {ctp 4652  cima 5703   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  s3rnOLD  32912  grtrimap  47797
  Copyright terms: Public domain W3C validator