![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnimatpd | Structured version Visualization version GIF version |
Description: The image of an unordered triple under a function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
fnimatpd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
fnimatpd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fnimatpd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
fnimatpd.4 | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Ref | Expression |
---|---|
fnimatpd | ⊢ (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹‘𝐴), (𝐹‘𝐵), (𝐹‘𝐶)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnimatpd.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | fnimatpd.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
3 | fnimatpd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
4 | fnimapr 7005 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) → (𝐹 “ {𝐴, 𝐵}) = {(𝐹‘𝐴), (𝐹‘𝐵)}) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝐹 “ {𝐴, 𝐵}) = {(𝐹‘𝐴), (𝐹‘𝐵)}) |
6 | fnimatpd.4 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
7 | fnsnfv 7001 | . . . . 5 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐶 ∈ 𝐷) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) | |
8 | 1, 6, 7 | syl2anc 583 | . . . 4 ⊢ (𝜑 → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) |
9 | 8 | eqcomd 2746 | . . 3 ⊢ (𝜑 → (𝐹 “ {𝐶}) = {(𝐹‘𝐶)}) |
10 | 5, 9 | uneq12d 4192 | . 2 ⊢ (𝜑 → ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹‘𝐴), (𝐹‘𝐵)} ∪ {(𝐹‘𝐶)})) |
11 | df-tp 4653 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
12 | 11 | imaeq2i 6087 | . . 3 ⊢ (𝐹 “ {𝐴, 𝐵, 𝐶}) = (𝐹 “ ({𝐴, 𝐵} ∪ {𝐶})) |
13 | imaundi 6181 | . . 3 ⊢ (𝐹 “ ({𝐴, 𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶})) | |
14 | 12, 13 | eqtri 2768 | . 2 ⊢ (𝐹 “ {𝐴, 𝐵, 𝐶}) = ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶})) |
15 | df-tp 4653 | . 2 ⊢ {(𝐹‘𝐴), (𝐹‘𝐵), (𝐹‘𝐶)} = ({(𝐹‘𝐴), (𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) | |
16 | 10, 14, 15 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹‘𝐴), (𝐹‘𝐵), (𝐹‘𝐶)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 {csn 4648 {cpr 4650 {ctp 4652 “ cima 5703 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: s3rnOLD 32912 grtrimap 47797 |
Copyright terms: Public domain | W3C validator |