MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnimatpd Structured version   Visualization version   GIF version

Theorem fnimatpd 6945
Description: The image of an unordered triple under a function. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
fnimatpd.1 (𝜑𝐹 Fn 𝐷)
fnimatpd.2 (𝜑𝐴𝐷)
fnimatpd.3 (𝜑𝐵𝐷)
fnimatpd.4 (𝜑𝐶𝐷)
Assertion
Ref Expression
fnimatpd (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹𝐴), (𝐹𝐵), (𝐹𝐶)})

Proof of Theorem fnimatpd
StepHypRef Expression
1 fnimatpd.1 . . . 4 (𝜑𝐹 Fn 𝐷)
2 fnimatpd.2 . . . 4 (𝜑𝐴𝐷)
3 fnimatpd.3 . . . 4 (𝜑𝐵𝐷)
4 fnimapr 6944 . . . 4 ((𝐹 Fn 𝐷𝐴𝐷𝐵𝐷) → (𝐹 “ {𝐴, 𝐵}) = {(𝐹𝐴), (𝐹𝐵)})
51, 2, 3, 4syl3anc 1373 . . 3 (𝜑 → (𝐹 “ {𝐴, 𝐵}) = {(𝐹𝐴), (𝐹𝐵)})
6 fnimatpd.4 . . . . 5 (𝜑𝐶𝐷)
7 fnsnfv 6940 . . . . 5 ((𝐹 Fn 𝐷𝐶𝐷) → {(𝐹𝐶)} = (𝐹 “ {𝐶}))
81, 6, 7syl2anc 584 . . . 4 (𝜑 → {(𝐹𝐶)} = (𝐹 “ {𝐶}))
98eqcomd 2735 . . 3 (𝜑 → (𝐹 “ {𝐶}) = {(𝐹𝐶)})
105, 9uneq12d 4132 . 2 (𝜑 → ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹𝐴), (𝐹𝐵)} ∪ {(𝐹𝐶)}))
11 df-tp 4594 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
1211imaeq2i 6029 . . 3 (𝐹 “ {𝐴, 𝐵, 𝐶}) = (𝐹 “ ({𝐴, 𝐵} ∪ {𝐶}))
13 imaundi 6122 . . 3 (𝐹 “ ({𝐴, 𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶}))
1412, 13eqtri 2752 . 2 (𝐹 “ {𝐴, 𝐵, 𝐶}) = ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶}))
15 df-tp 4594 . 2 {(𝐹𝐴), (𝐹𝐵), (𝐹𝐶)} = ({(𝐹𝐴), (𝐹𝐵)} ∪ {(𝐹𝐶)})
1610, 14, 153eqtr4g 2789 1 (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹𝐴), (𝐹𝐵), (𝐹𝐶)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3912  {csn 4589  {cpr 4591  {ctp 4593  cima 5641   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  s3rnOLD  32867  cycl3grtri  47946  grtrimap  47947
  Copyright terms: Public domain W3C validator