![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > s3rnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of s2rn 15008 as of 1-Aug-2025. Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
s3rnOLD.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
s3rnOLD.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
s3rnOLD.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
Ref | Expression |
---|---|
s3rnOLD | ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 6098 | . 2 ⊢ (〈“𝐼𝐽𝐾”〉 “ dom 〈“𝐼𝐽𝐾”〉) = ran 〈“𝐼𝐽𝐾”〉 | |
2 | s3rnOLD.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
3 | s3rnOLD.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
4 | s3rnOLD.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
5 | 2, 3, 4 | s3cld 14917 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
6 | wrdfn 14572 | . . . . . 6 ⊢ (〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷 → 〈“𝐼𝐽𝐾”〉 Fn (0..^(♯‘〈“𝐼𝐽𝐾”〉))) | |
7 | s3len 14939 | . . . . . . . . . 10 ⊢ (♯‘〈“𝐼𝐽𝐾”〉) = 3 | |
8 | 7 | oveq2i 7456 | . . . . . . . . 9 ⊢ (0..^(♯‘〈“𝐼𝐽𝐾”〉)) = (0..^3) |
9 | fzo0to3tp 13798 | . . . . . . . . 9 ⊢ (0..^3) = {0, 1, 2} | |
10 | 8, 9 | eqtri 2762 | . . . . . . . 8 ⊢ (0..^(♯‘〈“𝐼𝐽𝐾”〉)) = {0, 1, 2} |
11 | 10 | fneq2i 6676 | . . . . . . 7 ⊢ (〈“𝐼𝐽𝐾”〉 Fn (0..^(♯‘〈“𝐼𝐽𝐾”〉)) ↔ 〈“𝐼𝐽𝐾”〉 Fn {0, 1, 2}) |
12 | 11 | biimpi 216 | . . . . . 6 ⊢ (〈“𝐼𝐽𝐾”〉 Fn (0..^(♯‘〈“𝐼𝐽𝐾”〉)) → 〈“𝐼𝐽𝐾”〉 Fn {0, 1, 2}) |
13 | 5, 6, 12 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 Fn {0, 1, 2}) |
14 | 13 | fndmd 6683 | . . . 4 ⊢ (𝜑 → dom 〈“𝐼𝐽𝐾”〉 = {0, 1, 2}) |
15 | 14 | imaeq2d 6088 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉 “ dom 〈“𝐼𝐽𝐾”〉) = (〈“𝐼𝐽𝐾”〉 “ {0, 1, 2})) |
16 | c0ex 11280 | . . . . . 6 ⊢ 0 ∈ V | |
17 | 16 | tpid1 4793 | . . . . 5 ⊢ 0 ∈ {0, 1, 2} |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ {0, 1, 2}) |
19 | 1ex 11282 | . . . . . 6 ⊢ 1 ∈ V | |
20 | 19 | tpid2 4795 | . . . . 5 ⊢ 1 ∈ {0, 1, 2} |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ {0, 1, 2}) |
22 | 2ex 12366 | . . . . . 6 ⊢ 2 ∈ V | |
23 | 22 | tpid3 4798 | . . . . 5 ⊢ 2 ∈ {0, 1, 2} |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ {0, 1, 2}) |
25 | 13, 18, 21, 24 | fnimatpd 7004 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉 “ {0, 1, 2}) = {(〈“𝐼𝐽𝐾”〉‘0), (〈“𝐼𝐽𝐾”〉‘1), (〈“𝐼𝐽𝐾”〉‘2)}) |
26 | s3fv0 14936 | . . . . 5 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) | |
27 | 2, 26 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) |
28 | s3fv1 14937 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) | |
29 | 3, 28 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) |
30 | s3fv2 14938 | . . . . 5 ⊢ (𝐾 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) | |
31 | 4, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) |
32 | 27, 29, 31 | tpeq123d 4773 | . . 3 ⊢ (𝜑 → {(〈“𝐼𝐽𝐾”〉‘0), (〈“𝐼𝐽𝐾”〉‘1), (〈“𝐼𝐽𝐾”〉‘2)} = {𝐼, 𝐽, 𝐾}) |
33 | 15, 25, 32 | 3eqtrd 2778 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉 “ dom 〈“𝐼𝐽𝐾”〉) = {𝐼, 𝐽, 𝐾}) |
34 | 1, 33 | eqtr3id 2788 | 1 ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 {ctp 4652 dom cdm 5699 ran crn 5700 “ cima 5702 Fn wfn 6567 ‘cfv 6572 (class class class)co 7445 0cc0 11180 1c1 11181 2c2 12344 3c3 12345 ..^cfzo 13707 ♯chash 14375 Word cword 14558 〈“cs3 14887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-card 10004 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-3 12353 df-n0 12550 df-z 12636 df-uz 12900 df-fz 13564 df-fzo 13708 df-hash 14376 df-word 14559 df-concat 14615 df-s1 14640 df-s2 14893 df-s3 14894 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |