Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s3rnOLD Structured version   Visualization version   GIF version

Theorem s3rnOLD 32934
Description: Obsolete version of s2rn 14872 as of 1-Aug-2025. Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
s3rnOLD.i (𝜑𝐼𝐷)
s3rnOLD.j (𝜑𝐽𝐷)
s3rnOLD.k (𝜑𝐾𝐷)
Assertion
Ref Expression
s3rnOLD (𝜑 → ran ⟨“𝐼𝐽𝐾”⟩ = {𝐼, 𝐽, 𝐾})

Proof of Theorem s3rnOLD
StepHypRef Expression
1 imadmrn 6023 . 2 (⟨“𝐼𝐽𝐾”⟩ “ dom ⟨“𝐼𝐽𝐾”⟩) = ran ⟨“𝐼𝐽𝐾”⟩
2 s3rnOLD.i . . . . . . 7 (𝜑𝐼𝐷)
3 s3rnOLD.j . . . . . . 7 (𝜑𝐽𝐷)
4 s3rnOLD.k . . . . . . 7 (𝜑𝐾𝐷)
52, 3, 4s3cld 14781 . . . . . 6 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
6 wrdfn 14437 . . . . . 6 (⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷 → ⟨“𝐼𝐽𝐾”⟩ Fn (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)))
7 s3len 14803 . . . . . . . . . 10 (♯‘⟨“𝐼𝐽𝐾”⟩) = 3
87oveq2i 7363 . . . . . . . . 9 (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) = (0..^3)
9 fzo0to3tp 13654 . . . . . . . . 9 (0..^3) = {0, 1, 2}
108, 9eqtri 2756 . . . . . . . 8 (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) = {0, 1, 2}
1110fneq2i 6584 . . . . . . 7 (⟨“𝐼𝐽𝐾”⟩ Fn (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) ↔ ⟨“𝐼𝐽𝐾”⟩ Fn {0, 1, 2})
1211biimpi 216 . . . . . 6 (⟨“𝐼𝐽𝐾”⟩ Fn (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) → ⟨“𝐼𝐽𝐾”⟩ Fn {0, 1, 2})
135, 6, 123syl 18 . . . . 5 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ Fn {0, 1, 2})
1413fndmd 6591 . . . 4 (𝜑 → dom ⟨“𝐼𝐽𝐾”⟩ = {0, 1, 2})
1514imaeq2d 6013 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩ “ dom ⟨“𝐼𝐽𝐾”⟩) = (⟨“𝐼𝐽𝐾”⟩ “ {0, 1, 2}))
16 c0ex 11113 . . . . . 6 0 ∈ V
1716tpid1 4720 . . . . 5 0 ∈ {0, 1, 2}
1817a1i 11 . . . 4 (𝜑 → 0 ∈ {0, 1, 2})
19 1ex 11115 . . . . . 6 1 ∈ V
2019tpid2 4722 . . . . 5 1 ∈ {0, 1, 2}
2120a1i 11 . . . 4 (𝜑 → 1 ∈ {0, 1, 2})
22 2ex 12209 . . . . . 6 2 ∈ V
2322tpid3 4725 . . . . 5 2 ∈ {0, 1, 2}
2423a1i 11 . . . 4 (𝜑 → 2 ∈ {0, 1, 2})
2513, 18, 21, 24fnimatpd 6912 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩ “ {0, 1, 2}) = {(⟨“𝐼𝐽𝐾”⟩‘0), (⟨“𝐼𝐽𝐾”⟩‘1), (⟨“𝐼𝐽𝐾”⟩‘2)})
26 s3fv0 14800 . . . . 5 (𝐼𝐷 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
272, 26syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
28 s3fv1 14801 . . . . 5 (𝐽𝐷 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
293, 28syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
30 s3fv2 14802 . . . . 5 (𝐾𝐷 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
314, 30syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
3227, 29, 31tpeq123d 4700 . . 3 (𝜑 → {(⟨“𝐼𝐽𝐾”⟩‘0), (⟨“𝐼𝐽𝐾”⟩‘1), (⟨“𝐼𝐽𝐾”⟩‘2)} = {𝐼, 𝐽, 𝐾})
3315, 25, 323eqtrd 2772 . 2 (𝜑 → (⟨“𝐼𝐽𝐾”⟩ “ dom ⟨“𝐼𝐽𝐾”⟩) = {𝐼, 𝐽, 𝐾})
341, 33eqtr3id 2782 1 (𝜑 → ran ⟨“𝐼𝐽𝐾”⟩ = {𝐼, 𝐽, 𝐾})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {ctp 4579  dom cdm 5619  ran crn 5620  cima 5622   Fn wfn 6481  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014  2c2 12187  3c3 12188  ..^cfzo 13556  chash 14239  Word cword 14422  ⟨“cs3 14751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-concat 14480  df-s1 14506  df-s2 14757  df-s3 14758
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator