| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > s3rnOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of s2rn 14939 as of 1-Aug-2025. Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| s3rnOLD.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| s3rnOLD.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| s3rnOLD.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| s3rnOLD | ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6049 | . 2 ⊢ (〈“𝐼𝐽𝐾”〉 “ dom 〈“𝐼𝐽𝐾”〉) = ran 〈“𝐼𝐽𝐾”〉 | |
| 2 | s3rnOLD.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 3 | s3rnOLD.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 4 | s3rnOLD.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
| 5 | 2, 3, 4 | s3cld 14848 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
| 6 | wrdfn 14503 | . . . . . 6 ⊢ (〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷 → 〈“𝐼𝐽𝐾”〉 Fn (0..^(♯‘〈“𝐼𝐽𝐾”〉))) | |
| 7 | s3len 14870 | . . . . . . . . . 10 ⊢ (♯‘〈“𝐼𝐽𝐾”〉) = 3 | |
| 8 | 7 | oveq2i 7405 | . . . . . . . . 9 ⊢ (0..^(♯‘〈“𝐼𝐽𝐾”〉)) = (0..^3) |
| 9 | fzo0to3tp 13725 | . . . . . . . . 9 ⊢ (0..^3) = {0, 1, 2} | |
| 10 | 8, 9 | eqtri 2753 | . . . . . . . 8 ⊢ (0..^(♯‘〈“𝐼𝐽𝐾”〉)) = {0, 1, 2} |
| 11 | 10 | fneq2i 6624 | . . . . . . 7 ⊢ (〈“𝐼𝐽𝐾”〉 Fn (0..^(♯‘〈“𝐼𝐽𝐾”〉)) ↔ 〈“𝐼𝐽𝐾”〉 Fn {0, 1, 2}) |
| 12 | 11 | biimpi 216 | . . . . . 6 ⊢ (〈“𝐼𝐽𝐾”〉 Fn (0..^(♯‘〈“𝐼𝐽𝐾”〉)) → 〈“𝐼𝐽𝐾”〉 Fn {0, 1, 2}) |
| 13 | 5, 6, 12 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 Fn {0, 1, 2}) |
| 14 | 13 | fndmd 6631 | . . . 4 ⊢ (𝜑 → dom 〈“𝐼𝐽𝐾”〉 = {0, 1, 2}) |
| 15 | 14 | imaeq2d 6039 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉 “ dom 〈“𝐼𝐽𝐾”〉) = (〈“𝐼𝐽𝐾”〉 “ {0, 1, 2})) |
| 16 | c0ex 11186 | . . . . . 6 ⊢ 0 ∈ V | |
| 17 | 16 | tpid1 4740 | . . . . 5 ⊢ 0 ∈ {0, 1, 2} |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ {0, 1, 2}) |
| 19 | 1ex 11188 | . . . . . 6 ⊢ 1 ∈ V | |
| 20 | 19 | tpid2 4742 | . . . . 5 ⊢ 1 ∈ {0, 1, 2} |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ {0, 1, 2}) |
| 22 | 2ex 12274 | . . . . . 6 ⊢ 2 ∈ V | |
| 23 | 22 | tpid3 4745 | . . . . 5 ⊢ 2 ∈ {0, 1, 2} |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ {0, 1, 2}) |
| 25 | 13, 18, 21, 24 | fnimatpd 6952 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉 “ {0, 1, 2}) = {(〈“𝐼𝐽𝐾”〉‘0), (〈“𝐼𝐽𝐾”〉‘1), (〈“𝐼𝐽𝐾”〉‘2)}) |
| 26 | s3fv0 14867 | . . . . 5 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) | |
| 27 | 2, 26 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) |
| 28 | s3fv1 14868 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) | |
| 29 | 3, 28 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) |
| 30 | s3fv2 14869 | . . . . 5 ⊢ (𝐾 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) | |
| 31 | 4, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) |
| 32 | 27, 29, 31 | tpeq123d 4720 | . . 3 ⊢ (𝜑 → {(〈“𝐼𝐽𝐾”〉‘0), (〈“𝐼𝐽𝐾”〉‘1), (〈“𝐼𝐽𝐾”〉‘2)} = {𝐼, 𝐽, 𝐾}) |
| 33 | 15, 25, 32 | 3eqtrd 2769 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉 “ dom 〈“𝐼𝐽𝐾”〉) = {𝐼, 𝐽, 𝐾}) |
| 34 | 1, 33 | eqtr3id 2779 | 1 ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {ctp 4601 dom cdm 5646 ran crn 5647 “ cima 5649 Fn wfn 6514 ‘cfv 6519 (class class class)co 7394 0cc0 11086 1c1 11087 2c2 12252 3c3 12253 ..^cfzo 13628 ♯chash 14305 Word cword 14488 〈“cs3 14818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-fz 13482 df-fzo 13629 df-hash 14306 df-word 14489 df-concat 14546 df-s1 14571 df-s2 14824 df-s3 14825 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |