Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grtrimap Structured version   Visualization version   GIF version

Theorem grtrimap 47888
Description: Conditions for mapping triangles onto triangles. Lemma for grimgrtri 47889 and grlimgrtri 47936. (Contributed by AV, 23-Aug-2025.)
Assertion
Ref Expression
grtrimap (𝐹:𝑉1-1𝑊 → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊) ∧ (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)} ∧ (♯‘(𝐹𝑇)) = 3)))

Proof of Theorem grtrimap
StepHypRef Expression
1 f1f 6784 . . . . . . . 8 (𝐹:𝑉1-1𝑊𝐹:𝑉𝑊)
21ffvelcdmda 7084 . . . . . . 7 ((𝐹:𝑉1-1𝑊𝑎𝑉) → (𝐹𝑎) ∈ 𝑊)
32ex 412 . . . . . 6 (𝐹:𝑉1-1𝑊 → (𝑎𝑉 → (𝐹𝑎) ∈ 𝑊))
41ffvelcdmda 7084 . . . . . . 7 ((𝐹:𝑉1-1𝑊𝑏𝑉) → (𝐹𝑏) ∈ 𝑊)
54ex 412 . . . . . 6 (𝐹:𝑉1-1𝑊 → (𝑏𝑉 → (𝐹𝑏) ∈ 𝑊))
61ffvelcdmda 7084 . . . . . . 7 ((𝐹:𝑉1-1𝑊𝑐𝑉) → (𝐹𝑐) ∈ 𝑊)
76ex 412 . . . . . 6 (𝐹:𝑉1-1𝑊 → (𝑐𝑉 → (𝐹𝑐) ∈ 𝑊))
83, 5, 73anim123d 1444 . . . . 5 (𝐹:𝑉1-1𝑊 → ((𝑎𝑉𝑏𝑉𝑐𝑉) → ((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊)))
98adantrd 491 . . . 4 (𝐹:𝑉1-1𝑊 → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → ((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊)))
109imp 406 . . 3 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → ((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊))
11 imaeq2 6054 . . . . . 6 (𝑇 = {𝑎, 𝑏, 𝑐} → (𝐹𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐}))
1211ad2antrl 728 . . . . 5 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (𝐹𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐}))
1312adantl 481 . . . 4 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐}))
14 f1fn 6785 . . . . . 6 (𝐹:𝑉1-1𝑊𝐹 Fn 𝑉)
1514adantr 480 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝐹 Fn 𝑉)
16 simprl1 1218 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑎𝑉)
17 simprl2 1219 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑏𝑉)
18 simprl3 1220 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑐𝑉)
1915, 16, 17, 18fnimatpd 6973 . . . 4 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹 “ {𝑎, 𝑏, 𝑐}) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)})
2013, 19eqtrd 2769 . . 3 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)})
21 simpl 482 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝐹:𝑉1-1𝑊)
22 tpssi 4818 . . . . . . . 8 ((𝑎𝑉𝑏𝑉𝑐𝑉) → {𝑎, 𝑏, 𝑐} ⊆ 𝑉)
2322adantr 480 . . . . . . 7 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → {𝑎, 𝑏, 𝑐} ⊆ 𝑉)
24 sseq1 3989 . . . . . . . 8 (𝑇 = {𝑎, 𝑏, 𝑐} → (𝑇𝑉 ↔ {𝑎, 𝑏, 𝑐} ⊆ 𝑉))
2524ad2antrl 728 . . . . . . 7 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (𝑇𝑉 ↔ {𝑎, 𝑏, 𝑐} ⊆ 𝑉))
2623, 25mpbird 257 . . . . . 6 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → 𝑇𝑉)
2726adantl 481 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑇𝑉)
28 tpex 7748 . . . . . . . 8 {𝑎, 𝑏, 𝑐} ∈ V
29 eleq1 2821 . . . . . . . 8 (𝑇 = {𝑎, 𝑏, 𝑐} → (𝑇 ∈ V ↔ {𝑎, 𝑏, 𝑐} ∈ V))
3028, 29mpbiri 258 . . . . . . 7 (𝑇 = {𝑎, 𝑏, 𝑐} → 𝑇 ∈ V)
3130ad2antrl 728 . . . . . 6 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → 𝑇 ∈ V)
3231adantl 481 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑇 ∈ V)
33 f1imaeng 9036 . . . . . . 7 ((𝐹:𝑉1-1𝑊𝑇𝑉𝑇 ∈ V) → (𝐹𝑇) ≈ 𝑇)
34 hasheni 14370 . . . . . . 7 ((𝐹𝑇) ≈ 𝑇 → (♯‘(𝐹𝑇)) = (♯‘𝑇))
3533, 34syl 17 . . . . . 6 ((𝐹:𝑉1-1𝑊𝑇𝑉𝑇 ∈ V) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
3635eqcomd 2740 . . . . 5 ((𝐹:𝑉1-1𝑊𝑇𝑉𝑇 ∈ V) → (♯‘𝑇) = (♯‘(𝐹𝑇)))
3721, 27, 32, 36syl3anc 1372 . . . 4 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘𝑇) = (♯‘(𝐹𝑇)))
38 simprrr 781 . . . 4 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘𝑇) = 3)
3937, 38eqtr3d 2771 . . 3 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘(𝐹𝑇)) = 3)
4010, 20, 393jca 1128 . 2 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊) ∧ (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)} ∧ (♯‘(𝐹𝑇)) = 3))
4140ex 412 1 (𝐹:𝑉1-1𝑊 → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊) ∧ (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)} ∧ (♯‘(𝐹𝑇)) = 3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3463  wss 3931  {ctp 4610   class class class wbr 5123  cima 5668   Fn wfn 6536  1-1wf1 6538  cfv 6541  cen 8964  3c3 12304  chash 14352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-hash 14353
This theorem is referenced by:  grimgrtri  47889  grlimgrtri  47936
  Copyright terms: Public domain W3C validator