Proof of Theorem grtrimap
| Step | Hyp | Ref
| Expression |
| 1 | | f1f 6784 |
. . . . . . . 8
⊢ (𝐹:𝑉–1-1→𝑊 → 𝐹:𝑉⟶𝑊) |
| 2 | 1 | ffvelcdmda 7084 |
. . . . . . 7
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑎 ∈ 𝑉) → (𝐹‘𝑎) ∈ 𝑊) |
| 3 | 2 | ex 412 |
. . . . . 6
⊢ (𝐹:𝑉–1-1→𝑊 → (𝑎 ∈ 𝑉 → (𝐹‘𝑎) ∈ 𝑊)) |
| 4 | 1 | ffvelcdmda 7084 |
. . . . . . 7
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑏 ∈ 𝑉) → (𝐹‘𝑏) ∈ 𝑊) |
| 5 | 4 | ex 412 |
. . . . . 6
⊢ (𝐹:𝑉–1-1→𝑊 → (𝑏 ∈ 𝑉 → (𝐹‘𝑏) ∈ 𝑊)) |
| 6 | 1 | ffvelcdmda 7084 |
. . . . . . 7
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑐 ∈ 𝑉) → (𝐹‘𝑐) ∈ 𝑊) |
| 7 | 6 | ex 412 |
. . . . . 6
⊢ (𝐹:𝑉–1-1→𝑊 → (𝑐 ∈ 𝑉 → (𝐹‘𝑐) ∈ 𝑊)) |
| 8 | 3, 5, 7 | 3anim123d 1444 |
. . . . 5
⊢ (𝐹:𝑉–1-1→𝑊 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → ((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊))) |
| 9 | 8 | adantrd 491 |
. . . 4
⊢ (𝐹:𝑉–1-1→𝑊 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → ((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊))) |
| 10 | 9 | imp 406 |
. . 3
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → ((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊)) |
| 11 | | imaeq2 6054 |
. . . . . 6
⊢ (𝑇 = {𝑎, 𝑏, 𝑐} → (𝐹 “ 𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐})) |
| 12 | 11 | ad2antrl 728 |
. . . . 5
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (𝐹 “ 𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐})) |
| 13 | 12 | adantl 481 |
. . . 4
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹 “ 𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐})) |
| 14 | | f1fn 6785 |
. . . . . 6
⊢ (𝐹:𝑉–1-1→𝑊 → 𝐹 Fn 𝑉) |
| 15 | 14 | adantr 480 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝐹 Fn 𝑉) |
| 16 | | simprl1 1218 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑎 ∈ 𝑉) |
| 17 | | simprl2 1219 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑏 ∈ 𝑉) |
| 18 | | simprl3 1220 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑐 ∈ 𝑉) |
| 19 | 15, 16, 17, 18 | fnimatpd 6973 |
. . . 4
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹 “ {𝑎, 𝑏, 𝑐}) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)}) |
| 20 | 13, 19 | eqtrd 2769 |
. . 3
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)}) |
| 21 | | simpl 482 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝐹:𝑉–1-1→𝑊) |
| 22 | | tpssi 4818 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → {𝑎, 𝑏, 𝑐} ⊆ 𝑉) |
| 23 | 22 | adantr 480 |
. . . . . . 7
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → {𝑎, 𝑏, 𝑐} ⊆ 𝑉) |
| 24 | | sseq1 3989 |
. . . . . . . 8
⊢ (𝑇 = {𝑎, 𝑏, 𝑐} → (𝑇 ⊆ 𝑉 ↔ {𝑎, 𝑏, 𝑐} ⊆ 𝑉)) |
| 25 | 24 | ad2antrl 728 |
. . . . . . 7
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (𝑇 ⊆ 𝑉 ↔ {𝑎, 𝑏, 𝑐} ⊆ 𝑉)) |
| 26 | 23, 25 | mpbird 257 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → 𝑇 ⊆ 𝑉) |
| 27 | 26 | adantl 481 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑇 ⊆ 𝑉) |
| 28 | | tpex 7748 |
. . . . . . . 8
⊢ {𝑎, 𝑏, 𝑐} ∈ V |
| 29 | | eleq1 2821 |
. . . . . . . 8
⊢ (𝑇 = {𝑎, 𝑏, 𝑐} → (𝑇 ∈ V ↔ {𝑎, 𝑏, 𝑐} ∈ V)) |
| 30 | 28, 29 | mpbiri 258 |
. . . . . . 7
⊢ (𝑇 = {𝑎, 𝑏, 𝑐} → 𝑇 ∈ V) |
| 31 | 30 | ad2antrl 728 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → 𝑇 ∈ V) |
| 32 | 31 | adantl 481 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑇 ∈ V) |
| 33 | | f1imaeng 9036 |
. . . . . . 7
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑇 ⊆ 𝑉 ∧ 𝑇 ∈ V) → (𝐹 “ 𝑇) ≈ 𝑇) |
| 34 | | hasheni 14370 |
. . . . . . 7
⊢ ((𝐹 “ 𝑇) ≈ 𝑇 → (♯‘(𝐹 “ 𝑇)) = (♯‘𝑇)) |
| 35 | 33, 34 | syl 17 |
. . . . . 6
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑇 ⊆ 𝑉 ∧ 𝑇 ∈ V) → (♯‘(𝐹 “ 𝑇)) = (♯‘𝑇)) |
| 36 | 35 | eqcomd 2740 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑇 ⊆ 𝑉 ∧ 𝑇 ∈ V) → (♯‘𝑇) = (♯‘(𝐹 “ 𝑇))) |
| 37 | 21, 27, 32, 36 | syl3anc 1372 |
. . . 4
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘𝑇) = (♯‘(𝐹 “ 𝑇))) |
| 38 | | simprrr 781 |
. . . 4
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘𝑇) = 3) |
| 39 | 37, 38 | eqtr3d 2771 |
. . 3
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘(𝐹 “ 𝑇)) = 3) |
| 40 | 10, 20, 39 | 3jca 1128 |
. 2
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊) ∧ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3)) |
| 41 | 40 | ex 412 |
1
⊢ (𝐹:𝑉–1-1→𝑊 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊) ∧ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3))) |