Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grtrimap Structured version   Visualization version   GIF version

Theorem grtrimap 47920
Description: Conditions for mapping triangles onto triangles. Lemma for grimgrtri 47921 and grlimgrtri 47968. (Contributed by AV, 23-Aug-2025.)
Assertion
Ref Expression
grtrimap (𝐹:𝑉1-1𝑊 → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊) ∧ (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)} ∧ (♯‘(𝐹𝑇)) = 3)))

Proof of Theorem grtrimap
StepHypRef Expression
1 f1f 6738 . . . . . . . 8 (𝐹:𝑉1-1𝑊𝐹:𝑉𝑊)
21ffvelcdmda 7038 . . . . . . 7 ((𝐹:𝑉1-1𝑊𝑎𝑉) → (𝐹𝑎) ∈ 𝑊)
32ex 412 . . . . . 6 (𝐹:𝑉1-1𝑊 → (𝑎𝑉 → (𝐹𝑎) ∈ 𝑊))
41ffvelcdmda 7038 . . . . . . 7 ((𝐹:𝑉1-1𝑊𝑏𝑉) → (𝐹𝑏) ∈ 𝑊)
54ex 412 . . . . . 6 (𝐹:𝑉1-1𝑊 → (𝑏𝑉 → (𝐹𝑏) ∈ 𝑊))
61ffvelcdmda 7038 . . . . . . 7 ((𝐹:𝑉1-1𝑊𝑐𝑉) → (𝐹𝑐) ∈ 𝑊)
76ex 412 . . . . . 6 (𝐹:𝑉1-1𝑊 → (𝑐𝑉 → (𝐹𝑐) ∈ 𝑊))
83, 5, 73anim123d 1445 . . . . 5 (𝐹:𝑉1-1𝑊 → ((𝑎𝑉𝑏𝑉𝑐𝑉) → ((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊)))
98adantrd 491 . . . 4 (𝐹:𝑉1-1𝑊 → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → ((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊)))
109imp 406 . . 3 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → ((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊))
11 imaeq2 6016 . . . . . 6 (𝑇 = {𝑎, 𝑏, 𝑐} → (𝐹𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐}))
1211ad2antrl 728 . . . . 5 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (𝐹𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐}))
1312adantl 481 . . . 4 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐}))
14 f1fn 6739 . . . . . 6 (𝐹:𝑉1-1𝑊𝐹 Fn 𝑉)
1514adantr 480 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝐹 Fn 𝑉)
16 simprl1 1219 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑎𝑉)
17 simprl2 1220 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑏𝑉)
18 simprl3 1221 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑐𝑉)
1915, 16, 17, 18fnimatpd 6927 . . . 4 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹 “ {𝑎, 𝑏, 𝑐}) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)})
2013, 19eqtrd 2764 . . 3 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)})
21 simpl 482 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝐹:𝑉1-1𝑊)
22 tpssi 4798 . . . . . . . 8 ((𝑎𝑉𝑏𝑉𝑐𝑉) → {𝑎, 𝑏, 𝑐} ⊆ 𝑉)
2322adantr 480 . . . . . . 7 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → {𝑎, 𝑏, 𝑐} ⊆ 𝑉)
24 sseq1 3969 . . . . . . . 8 (𝑇 = {𝑎, 𝑏, 𝑐} → (𝑇𝑉 ↔ {𝑎, 𝑏, 𝑐} ⊆ 𝑉))
2524ad2antrl 728 . . . . . . 7 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (𝑇𝑉 ↔ {𝑎, 𝑏, 𝑐} ⊆ 𝑉))
2623, 25mpbird 257 . . . . . 6 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → 𝑇𝑉)
2726adantl 481 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑇𝑉)
28 tpex 7702 . . . . . . . 8 {𝑎, 𝑏, 𝑐} ∈ V
29 eleq1 2816 . . . . . . . 8 (𝑇 = {𝑎, 𝑏, 𝑐} → (𝑇 ∈ V ↔ {𝑎, 𝑏, 𝑐} ∈ V))
3028, 29mpbiri 258 . . . . . . 7 (𝑇 = {𝑎, 𝑏, 𝑐} → 𝑇 ∈ V)
3130ad2antrl 728 . . . . . 6 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → 𝑇 ∈ V)
3231adantl 481 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑇 ∈ V)
33 f1imaeng 8962 . . . . . . 7 ((𝐹:𝑉1-1𝑊𝑇𝑉𝑇 ∈ V) → (𝐹𝑇) ≈ 𝑇)
34 hasheni 14289 . . . . . . 7 ((𝐹𝑇) ≈ 𝑇 → (♯‘(𝐹𝑇)) = (♯‘𝑇))
3533, 34syl 17 . . . . . 6 ((𝐹:𝑉1-1𝑊𝑇𝑉𝑇 ∈ V) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
3635eqcomd 2735 . . . . 5 ((𝐹:𝑉1-1𝑊𝑇𝑉𝑇 ∈ V) → (♯‘𝑇) = (♯‘(𝐹𝑇)))
3721, 27, 32, 36syl3anc 1373 . . . 4 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘𝑇) = (♯‘(𝐹𝑇)))
38 simprrr 781 . . . 4 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘𝑇) = 3)
3937, 38eqtr3d 2766 . . 3 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘(𝐹𝑇)) = 3)
4010, 20, 393jca 1128 . 2 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊) ∧ (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)} ∧ (♯‘(𝐹𝑇)) = 3))
4140ex 412 1 (𝐹:𝑉1-1𝑊 → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊) ∧ (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)} ∧ (♯‘(𝐹𝑇)) = 3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  {ctp 4589   class class class wbr 5102  cima 5634   Fn wfn 6494  1-1wf1 6496  cfv 6499  cen 8892  3c3 12218  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-hash 14272
This theorem is referenced by:  grimgrtri  47921  grlimgrtri  47968
  Copyright terms: Public domain W3C validator