Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grtrimap Structured version   Visualization version   GIF version

Theorem grtrimap 47937
Description: Conditions for mapping triangles onto triangles. Lemma for grimgrtri 47938 and grlimgrtri 47985. (Contributed by AV, 23-Aug-2025.)
Assertion
Ref Expression
grtrimap (𝐹:𝑉1-1𝑊 → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊) ∧ (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)} ∧ (♯‘(𝐹𝑇)) = 3)))

Proof of Theorem grtrimap
StepHypRef Expression
1 f1f 6758 . . . . . . . 8 (𝐹:𝑉1-1𝑊𝐹:𝑉𝑊)
21ffvelcdmda 7058 . . . . . . 7 ((𝐹:𝑉1-1𝑊𝑎𝑉) → (𝐹𝑎) ∈ 𝑊)
32ex 412 . . . . . 6 (𝐹:𝑉1-1𝑊 → (𝑎𝑉 → (𝐹𝑎) ∈ 𝑊))
41ffvelcdmda 7058 . . . . . . 7 ((𝐹:𝑉1-1𝑊𝑏𝑉) → (𝐹𝑏) ∈ 𝑊)
54ex 412 . . . . . 6 (𝐹:𝑉1-1𝑊 → (𝑏𝑉 → (𝐹𝑏) ∈ 𝑊))
61ffvelcdmda 7058 . . . . . . 7 ((𝐹:𝑉1-1𝑊𝑐𝑉) → (𝐹𝑐) ∈ 𝑊)
76ex 412 . . . . . 6 (𝐹:𝑉1-1𝑊 → (𝑐𝑉 → (𝐹𝑐) ∈ 𝑊))
83, 5, 73anim123d 1445 . . . . 5 (𝐹:𝑉1-1𝑊 → ((𝑎𝑉𝑏𝑉𝑐𝑉) → ((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊)))
98adantrd 491 . . . 4 (𝐹:𝑉1-1𝑊 → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → ((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊)))
109imp 406 . . 3 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → ((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊))
11 imaeq2 6029 . . . . . 6 (𝑇 = {𝑎, 𝑏, 𝑐} → (𝐹𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐}))
1211ad2antrl 728 . . . . 5 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (𝐹𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐}))
1312adantl 481 . . . 4 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐}))
14 f1fn 6759 . . . . . 6 (𝐹:𝑉1-1𝑊𝐹 Fn 𝑉)
1514adantr 480 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝐹 Fn 𝑉)
16 simprl1 1219 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑎𝑉)
17 simprl2 1220 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑏𝑉)
18 simprl3 1221 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑐𝑉)
1915, 16, 17, 18fnimatpd 6947 . . . 4 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹 “ {𝑎, 𝑏, 𝑐}) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)})
2013, 19eqtrd 2765 . . 3 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)})
21 simpl 482 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝐹:𝑉1-1𝑊)
22 tpssi 4804 . . . . . . . 8 ((𝑎𝑉𝑏𝑉𝑐𝑉) → {𝑎, 𝑏, 𝑐} ⊆ 𝑉)
2322adantr 480 . . . . . . 7 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → {𝑎, 𝑏, 𝑐} ⊆ 𝑉)
24 sseq1 3974 . . . . . . . 8 (𝑇 = {𝑎, 𝑏, 𝑐} → (𝑇𝑉 ↔ {𝑎, 𝑏, 𝑐} ⊆ 𝑉))
2524ad2antrl 728 . . . . . . 7 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (𝑇𝑉 ↔ {𝑎, 𝑏, 𝑐} ⊆ 𝑉))
2623, 25mpbird 257 . . . . . 6 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → 𝑇𝑉)
2726adantl 481 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑇𝑉)
28 tpex 7724 . . . . . . . 8 {𝑎, 𝑏, 𝑐} ∈ V
29 eleq1 2817 . . . . . . . 8 (𝑇 = {𝑎, 𝑏, 𝑐} → (𝑇 ∈ V ↔ {𝑎, 𝑏, 𝑐} ∈ V))
3028, 29mpbiri 258 . . . . . . 7 (𝑇 = {𝑎, 𝑏, 𝑐} → 𝑇 ∈ V)
3130ad2antrl 728 . . . . . 6 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → 𝑇 ∈ V)
3231adantl 481 . . . . 5 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑇 ∈ V)
33 f1imaeng 8987 . . . . . . 7 ((𝐹:𝑉1-1𝑊𝑇𝑉𝑇 ∈ V) → (𝐹𝑇) ≈ 𝑇)
34 hasheni 14319 . . . . . . 7 ((𝐹𝑇) ≈ 𝑇 → (♯‘(𝐹𝑇)) = (♯‘𝑇))
3533, 34syl 17 . . . . . 6 ((𝐹:𝑉1-1𝑊𝑇𝑉𝑇 ∈ V) → (♯‘(𝐹𝑇)) = (♯‘𝑇))
3635eqcomd 2736 . . . . 5 ((𝐹:𝑉1-1𝑊𝑇𝑉𝑇 ∈ V) → (♯‘𝑇) = (♯‘(𝐹𝑇)))
3721, 27, 32, 36syl3anc 1373 . . . 4 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘𝑇) = (♯‘(𝐹𝑇)))
38 simprrr 781 . . . 4 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘𝑇) = 3)
3937, 38eqtr3d 2767 . . 3 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘(𝐹𝑇)) = 3)
4010, 20, 393jca 1128 . 2 ((𝐹:𝑉1-1𝑊 ∧ ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊) ∧ (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)} ∧ (♯‘(𝐹𝑇)) = 3))
4140ex 412 1 (𝐹:𝑉1-1𝑊 → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹𝑎) ∈ 𝑊 ∧ (𝐹𝑏) ∈ 𝑊 ∧ (𝐹𝑐) ∈ 𝑊) ∧ (𝐹𝑇) = {(𝐹𝑎), (𝐹𝑏), (𝐹𝑐)} ∧ (♯‘(𝐹𝑇)) = 3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3916  {ctp 4595   class class class wbr 5109  cima 5643   Fn wfn 6508  1-1wf1 6510  cfv 6513  cen 8917  3c3 12243  chash 14301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-n0 12449  df-z 12536  df-uz 12800  df-hash 14302
This theorem is referenced by:  grimgrtri  47938  grlimgrtri  47985
  Copyright terms: Public domain W3C validator