Proof of Theorem grtrimap
Step | Hyp | Ref
| Expression |
1 | | f1f 6812 |
. . . . . . . 8
⊢ (𝐹:𝑉–1-1→𝑊 → 𝐹:𝑉⟶𝑊) |
2 | 1 | ffvelcdmda 7113 |
. . . . . . 7
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑎 ∈ 𝑉) → (𝐹‘𝑎) ∈ 𝑊) |
3 | 2 | ex 412 |
. . . . . 6
⊢ (𝐹:𝑉–1-1→𝑊 → (𝑎 ∈ 𝑉 → (𝐹‘𝑎) ∈ 𝑊)) |
4 | 1 | ffvelcdmda 7113 |
. . . . . . 7
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑏 ∈ 𝑉) → (𝐹‘𝑏) ∈ 𝑊) |
5 | 4 | ex 412 |
. . . . . 6
⊢ (𝐹:𝑉–1-1→𝑊 → (𝑏 ∈ 𝑉 → (𝐹‘𝑏) ∈ 𝑊)) |
6 | 1 | ffvelcdmda 7113 |
. . . . . . 7
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑐 ∈ 𝑉) → (𝐹‘𝑐) ∈ 𝑊) |
7 | 6 | ex 412 |
. . . . . 6
⊢ (𝐹:𝑉–1-1→𝑊 → (𝑐 ∈ 𝑉 → (𝐹‘𝑐) ∈ 𝑊)) |
8 | 3, 5, 7 | 3anim123d 1443 |
. . . . 5
⊢ (𝐹:𝑉–1-1→𝑊 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → ((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊))) |
9 | 8 | adantrd 491 |
. . . 4
⊢ (𝐹:𝑉–1-1→𝑊 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → ((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊))) |
10 | 9 | imp 406 |
. . 3
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → ((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊)) |
11 | | imaeq2 6080 |
. . . . . 6
⊢ (𝑇 = {𝑎, 𝑏, 𝑐} → (𝐹 “ 𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐})) |
12 | 11 | ad2antrl 727 |
. . . . 5
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (𝐹 “ 𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐})) |
13 | 12 | adantl 481 |
. . . 4
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹 “ 𝑇) = (𝐹 “ {𝑎, 𝑏, 𝑐})) |
14 | | f1fn 6813 |
. . . . . 6
⊢ (𝐹:𝑉–1-1→𝑊 → 𝐹 Fn 𝑉) |
15 | 14 | adantr 480 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝐹 Fn 𝑉) |
16 | | simprl1 1218 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑎 ∈ 𝑉) |
17 | | simprl2 1219 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑏 ∈ 𝑉) |
18 | | simprl3 1220 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑐 ∈ 𝑉) |
19 | 15, 16, 17, 18 | fnimatpd 7001 |
. . . 4
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹 “ {𝑎, 𝑏, 𝑐}) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)}) |
20 | 13, 19 | eqtrd 2780 |
. . 3
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)}) |
21 | | simpl 482 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝐹:𝑉–1-1→𝑊) |
22 | | tpssi 4863 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → {𝑎, 𝑏, 𝑐} ⊆ 𝑉) |
23 | 22 | adantr 480 |
. . . . . . 7
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → {𝑎, 𝑏, 𝑐} ⊆ 𝑉) |
24 | | sseq1 4034 |
. . . . . . . 8
⊢ (𝑇 = {𝑎, 𝑏, 𝑐} → (𝑇 ⊆ 𝑉 ↔ {𝑎, 𝑏, 𝑐} ⊆ 𝑉)) |
25 | 24 | ad2antrl 727 |
. . . . . . 7
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (𝑇 ⊆ 𝑉 ↔ {𝑎, 𝑏, 𝑐} ⊆ 𝑉)) |
26 | 23, 25 | mpbird 257 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → 𝑇 ⊆ 𝑉) |
27 | 26 | adantl 481 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑇 ⊆ 𝑉) |
28 | | tpex 7775 |
. . . . . . . 8
⊢ {𝑎, 𝑏, 𝑐} ∈ V |
29 | | eleq1 2832 |
. . . . . . . 8
⊢ (𝑇 = {𝑎, 𝑏, 𝑐} → (𝑇 ∈ V ↔ {𝑎, 𝑏, 𝑐} ∈ V)) |
30 | 28, 29 | mpbiri 258 |
. . . . . . 7
⊢ (𝑇 = {𝑎, 𝑏, 𝑐} → 𝑇 ∈ V) |
31 | 30 | ad2antrl 727 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → 𝑇 ∈ V) |
32 | 31 | adantl 481 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → 𝑇 ∈ V) |
33 | | f1imaeng 9068 |
. . . . . . 7
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑇 ⊆ 𝑉 ∧ 𝑇 ∈ V) → (𝐹 “ 𝑇) ≈ 𝑇) |
34 | | hasheni 14391 |
. . . . . . 7
⊢ ((𝐹 “ 𝑇) ≈ 𝑇 → (♯‘(𝐹 “ 𝑇)) = (♯‘𝑇)) |
35 | 33, 34 | syl 17 |
. . . . . 6
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑇 ⊆ 𝑉 ∧ 𝑇 ∈ V) → (♯‘(𝐹 “ 𝑇)) = (♯‘𝑇)) |
36 | 35 | eqcomd 2746 |
. . . . 5
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ 𝑇 ⊆ 𝑉 ∧ 𝑇 ∈ V) → (♯‘𝑇) = (♯‘(𝐹 “ 𝑇))) |
37 | 21, 27, 32, 36 | syl3anc 1371 |
. . . 4
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘𝑇) = (♯‘(𝐹 “ 𝑇))) |
38 | | simprrr 781 |
. . . 4
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘𝑇) = 3) |
39 | 37, 38 | eqtr3d 2782 |
. . 3
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (♯‘(𝐹 “ 𝑇)) = 3) |
40 | 10, 20, 39 | 3jca 1128 |
. 2
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊) ∧ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3)) |
41 | 40 | ex 412 |
1
⊢ (𝐹:𝑉–1-1→𝑊 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊) ∧ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3))) |