Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycl3grtri Structured version   Visualization version   GIF version

Theorem cycl3grtri 48052
Description: The vertices of a cycle of size 3 are a triangle in a graph. (Contributed by AV, 5-Oct-2025.)
Hypotheses
Ref Expression
cycl3grtri.g (𝜑𝐺 ∈ UPGraph)
cycl3grtri.c (𝜑𝐹(Cycles‘𝐺)𝑃)
cycl3grtri.n (𝜑 → (♯‘𝐹) = 3)
Assertion
Ref Expression
cycl3grtri (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))

Proof of Theorem cycl3grtri
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycl3grtri.n . 2 (𝜑 → (♯‘𝐹) = 3)
2 cycl3grtri.c . 2 (𝜑𝐹(Cycles‘𝐺)𝑃)
3 cyclprop 29778 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
4 tpeq1 4694 . . . . . . . . . . . . 13 (𝑥 = (𝑃‘0) → {𝑥, 𝑦, 𝑧} = {(𝑃‘0), 𝑦, 𝑧})
54eqeq2d 2742 . . . . . . . . . . . 12 (𝑥 = (𝑃‘0) → (ran 𝑃 = {𝑥, 𝑦, 𝑧} ↔ ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧}))
6 preq1 4685 . . . . . . . . . . . . . 14 (𝑥 = (𝑃‘0) → {𝑥, 𝑦} = {(𝑃‘0), 𝑦})
76eleq1d 2816 . . . . . . . . . . . . 13 (𝑥 = (𝑃‘0) → ({𝑥, 𝑦} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), 𝑦} ∈ (Edg‘𝐺)))
8 preq1 4685 . . . . . . . . . . . . . 14 (𝑥 = (𝑃‘0) → {𝑥, 𝑧} = {(𝑃‘0), 𝑧})
98eleq1d 2816 . . . . . . . . . . . . 13 (𝑥 = (𝑃‘0) → ({𝑥, 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺)))
107, 93anbi12d 1439 . . . . . . . . . . . 12 (𝑥 = (𝑃‘0) → (({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))
115, 103anbi13d 1440 . . . . . . . . . . 11 (𝑥 = (𝑃‘0) → ((ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)))))
12 tpeq2 4695 . . . . . . . . . . . . 13 (𝑦 = (𝑃‘1) → {(𝑃‘0), 𝑦, 𝑧} = {(𝑃‘0), (𝑃‘1), 𝑧})
1312eqeq2d 2742 . . . . . . . . . . . 12 (𝑦 = (𝑃‘1) → (ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ↔ ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧}))
14 preq2 4686 . . . . . . . . . . . . . 14 (𝑦 = (𝑃‘1) → {(𝑃‘0), 𝑦} = {(𝑃‘0), (𝑃‘1)})
1514eleq1d 2816 . . . . . . . . . . . . 13 (𝑦 = (𝑃‘1) → ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)))
16 preq1 4685 . . . . . . . . . . . . . 14 (𝑦 = (𝑃‘1) → {𝑦, 𝑧} = {(𝑃‘1), 𝑧})
1716eleq1d 2816 . . . . . . . . . . . . 13 (𝑦 = (𝑃‘1) → ({𝑦, 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)))
1815, 173anbi13d 1440 . . . . . . . . . . . 12 (𝑦 = (𝑃‘1) → (({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺))))
1913, 183anbi13d 1440 . . . . . . . . . . 11 (𝑦 = (𝑃‘1) → ((ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)))))
20 tpeq3 4696 . . . . . . . . . . . . 13 (𝑧 = (𝑃‘2) → {(𝑃‘0), (𝑃‘1), 𝑧} = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
2120eqeq2d 2742 . . . . . . . . . . . 12 (𝑧 = (𝑃‘2) → (ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ↔ ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
22 preq2 4686 . . . . . . . . . . . . . 14 (𝑧 = (𝑃‘2) → {(𝑃‘0), 𝑧} = {(𝑃‘0), (𝑃‘2)})
2322eleq1d 2816 . . . . . . . . . . . . 13 (𝑧 = (𝑃‘2) → ({(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
24 preq2 4686 . . . . . . . . . . . . . 14 (𝑧 = (𝑃‘2) → {(𝑃‘1), 𝑧} = {(𝑃‘1), (𝑃‘2)})
2524eleq1d 2816 . . . . . . . . . . . . 13 (𝑧 = (𝑃‘2) → ({(𝑃‘1), 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
2623, 253anbi23d 1441 . . . . . . . . . . . 12 (𝑧 = (𝑃‘2) → (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
2721, 263anbi13d 1440 . . . . . . . . . . 11 (𝑧 = (𝑃‘2) → ((ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))))
28 pthiswlk 29710 . . . . . . . . . . . . . 14 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
29 eqid 2731 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
3029wlkp 29602 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
31 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
32 3nn0 12405 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℕ0
33 0elfz 13530 . . . . . . . . . . . . . . . . . . 19 (3 ∈ ℕ0 → 0 ∈ (0...3))
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . 18 0 ∈ (0...3)
35 oveq2 7360 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) = 3 → (0...(♯‘𝐹)) = (0...3))
3634, 35eleqtrrid 2838 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 3 → 0 ∈ (0...(♯‘𝐹)))
3736ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 0 ∈ (0...(♯‘𝐹)))
3831, 37ffvelcdmd 7024 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘0) ∈ (Vtx‘𝐺))
3938ex 412 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺)))
4028, 30, 393syl 18 . . . . . . . . . . . . 13 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺)))
4140adantl 481 . . . . . . . . . . . 12 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺)))
4241imp 406 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘0) ∈ (Vtx‘𝐺))
43 1nn0 12403 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
44 1le3 12338 . . . . . . . . . . . . . . . . . . 19 1 ≤ 3
45 elfz2nn0 13524 . . . . . . . . . . . . . . . . . . 19 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
4643, 32, 44, 45mpbir3an 1342 . . . . . . . . . . . . . . . . . 18 1 ∈ (0...3)
4746, 35eleqtrrid 2838 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 3 → 1 ∈ (0...(♯‘𝐹)))
4847ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 1 ∈ (0...(♯‘𝐹)))
4931, 48ffvelcdmd 7024 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘1) ∈ (Vtx‘𝐺))
5049ex 412 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺)))
5128, 30, 503syl 18 . . . . . . . . . . . . 13 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺)))
5251adantl 481 . . . . . . . . . . . 12 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺)))
5352imp 406 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘1) ∈ (Vtx‘𝐺))
54 2nn0 12404 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
55 2re 12205 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
56 3re 12211 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℝ
57 2lt3 12298 . . . . . . . . . . . . . . . . . . . 20 2 < 3
5855, 56, 57ltleii 11242 . . . . . . . . . . . . . . . . . . 19 2 ≤ 3
59 elfz2nn0 13524 . . . . . . . . . . . . . . . . . . 19 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
6054, 32, 58, 59mpbir3an 1342 . . . . . . . . . . . . . . . . . 18 2 ∈ (0...3)
6160, 35eleqtrrid 2838 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 3 → 2 ∈ (0...(♯‘𝐹)))
6261ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 2 ∈ (0...(♯‘𝐹)))
6331, 62ffvelcdmd 7024 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘2) ∈ (Vtx‘𝐺))
6463ex 412 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺)))
6528, 30, 643syl 18 . . . . . . . . . . . . 13 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺)))
6665adantl 481 . . . . . . . . . . . 12 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺)))
6766imp 406 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘2) ∈ (Vtx‘𝐺))
68 fdm 6666 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
69 elnn0uz 12783 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ ℕ0 ↔ 3 ∈ (ℤ‘0))
7032, 69mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ (ℤ‘0)
71 fzisfzounsn 13686 . . . . . . . . . . . . . . . . . . . . . . . 24 (3 ∈ (ℤ‘0) → (0...3) = ((0..^3) ∪ {3}))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (0...3) = ((0..^3) ∪ {3})
73 fzo0to3tp 13658 . . . . . . . . . . . . . . . . . . . . . . . 24 (0..^3) = {0, 1, 2}
7473uneq1i 4113 . . . . . . . . . . . . . . . . . . . . . . 23 ((0..^3) ∪ {3}) = ({0, 1, 2} ∪ {3})
7572, 74eqtri 2754 . . . . . . . . . . . . . . . . . . . . . 22 (0...3) = ({0, 1, 2} ∪ {3})
7635, 75eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → (0...(♯‘𝐹)) = ({0, 1, 2} ∪ {3}))
7776adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (0...(♯‘𝐹)) = ({0, 1, 2} ∪ {3}))
7868, 77sylan9eq 2786 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → dom 𝑃 = ({0, 1, 2} ∪ {3}))
7978imaeq2d 6014 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ dom 𝑃) = (𝑃 “ ({0, 1, 2} ∪ {3})))
80 imadmrn 6024 . . . . . . . . . . . . . . . . . 18 (𝑃 “ dom 𝑃) = ran 𝑃
81 imaundi 6102 . . . . . . . . . . . . . . . . . 18 (𝑃 “ ({0, 1, 2} ∪ {3})) = ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3}))
8279, 80, 813eqtr3g 2789 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3})))
83 ffn 6657 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹)))
8483adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝑃 Fn (0...(♯‘𝐹)))
8584, 37, 48, 62fnimatpd 6912 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ {0, 1, 2}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
86 nn0fz0 13531 . . . . . . . . . . . . . . . . . . . . . . 23 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
8732, 86mpbi 230 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ (0...3)
8887, 35eleqtrrid 2838 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → 3 ∈ (0...(♯‘𝐹)))
8988adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → 3 ∈ (0...(♯‘𝐹)))
90 fnsnfv 6907 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 Fn (0...(♯‘𝐹)) ∧ 3 ∈ (0...(♯‘𝐹))) → {(𝑃‘3)} = (𝑃 “ {3}))
9183, 89, 90syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → {(𝑃‘3)} = (𝑃 “ {3}))
9291eqcomd 2737 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ {3}) = {(𝑃‘3)})
9385, 92uneq12d 4118 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3})) = ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}))
94 fveq2 6828 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → (𝑃‘(♯‘𝐹)) = (𝑃‘3))
9594eqeq2d 2742 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3)))
96 sneq 4585 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘3) = (𝑃‘0) → {(𝑃‘3)} = {(𝑃‘0)})
9796eqcoms 2739 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘3)} = {(𝑃‘0)})
9897uneq2d 4117 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}))
99 snsstp1 4767 . . . . . . . . . . . . . . . . . . . . . . 23 {(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)}
10099a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
101 ssequn2 4138 . . . . . . . . . . . . . . . . . . . . . 22 ({(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ↔ ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
102100, 101sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
10398, 102eqtrd 2766 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
10495, 103biimtrdi 253 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
105104impcom 407 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
106105adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
10782, 93, 1063eqtrd 2770 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
108107ex 412 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
10928, 30, 1083syl 18 . . . . . . . . . . . . . 14 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
110109adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
111110imp 406 . . . . . . . . . . . 12 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
112 breq2 5097 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 3 → (1 ≤ (♯‘𝐹) ↔ 1 ≤ 3))
11344, 112mpbiri 258 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 3 → 1 ≤ (♯‘𝐹))
114113ad2antll 729 . . . . . . . . . . . . . 14 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 1 ≤ (♯‘𝐹))
1152ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝐹(Cycles‘𝐺)𝑃)
116 cyclnumvtx 29785 . . . . . . . . . . . . . 14 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))
117114, 115, 116syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘ran 𝑃) = (♯‘𝐹))
1181ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘𝐹) = 3)
119117, 118eqtrd 2766 . . . . . . . . . . . 12 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘ran 𝑃) = 3)
120 cycl3grtri.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ UPGraph)
121 cycl3grtrilem 48051 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
122120, 121sylanl1 680 . . . . . . . . . . . 12 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
123111, 119, 1223jca 1128 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
12411, 19, 27, 42, 53, 67, 1233rspcedvdw 3590 . . . . . . . . . 10 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ∃𝑥 ∈ (Vtx‘𝐺)∃𝑦 ∈ (Vtx‘𝐺)∃𝑧 ∈ (Vtx‘𝐺)(ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))
125 eqid 2731 . . . . . . . . . . 11 (Edg‘𝐺) = (Edg‘𝐺)
12629, 125isgrtri 48048 . . . . . . . . . 10 (ran 𝑃 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥 ∈ (Vtx‘𝐺)∃𝑦 ∈ (Vtx‘𝐺)∃𝑧 ∈ (Vtx‘𝐺)(ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))
127124, 126sylibr 234 . . . . . . . . 9 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 ∈ (GrTriangles‘𝐺))
128127exp32 420 . . . . . . . 8 ((𝜑𝐹(Paths‘𝐺)𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((♯‘𝐹) = 3 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
129128com23 86 . . . . . . 7 ((𝜑𝐹(Paths‘𝐺)𝑃) → ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ran 𝑃 ∈ (GrTriangles‘𝐺))))
130129expcom 413 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝜑 → ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ran 𝑃 ∈ (GrTriangles‘𝐺)))))
131130com24 95 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺)))))
132131imp 406 . . . 4 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
1333, 132syl 17 . . 3 (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
134133com13 88 . 2 (𝜑 → ((♯‘𝐹) = 3 → (𝐹(Cycles‘𝐺)𝑃 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
1351, 2, 134mp2d 49 1 (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  cun 3895  wss 3897  {csn 4575  {cpr 4577  {ctp 4579   class class class wbr 5093  dom cdm 5619  ran crn 5620  cima 5622   Fn wfn 6482  wf 6483  cfv 6487  (class class class)co 7352  0cc0 11012  1c1 11013  cle 11153  2c2 12186  3c3 12187  0cn0 12387  cuz 12738  ...cfz 13413  ..^cfzo 13560  chash 14243  Vtxcvtx 28981  Edgcedg 29032  UPGraphcupgr 29065  Walkscwlks 29582  Pathscpths 29695  Cyclesccycls 29770  GrTrianglescgrtri 48042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-3o 8393  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9800  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-n0 12388  df-xnn0 12461  df-z 12475  df-uz 12739  df-fz 13414  df-fzo 13561  df-hash 14244  df-word 14427  df-edg 29033  df-uhgr 29043  df-upgr 29067  df-wlks 29585  df-trls 29676  df-pths 29699  df-cycls 29772  df-grtri 48043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator