Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycl3grtri Structured version   Visualization version   GIF version

Theorem cycl3grtri 47946
Description: The vertices of a cycle of size 3 are a triangle in a graph. (Contributed by AV, 5-Oct-2025.)
Hypotheses
Ref Expression
cycl3grtri.g (𝜑𝐺 ∈ UPGraph)
cycl3grtri.c (𝜑𝐹(Cycles‘𝐺)𝑃)
cycl3grtri.n (𝜑 → (♯‘𝐹) = 3)
Assertion
Ref Expression
cycl3grtri (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))

Proof of Theorem cycl3grtri
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycl3grtri.n . 2 (𝜑 → (♯‘𝐹) = 3)
2 cycl3grtri.c . 2 (𝜑𝐹(Cycles‘𝐺)𝑃)
3 cyclprop 29723 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
4 tpeq1 4706 . . . . . . . . . . . . 13 (𝑥 = (𝑃‘0) → {𝑥, 𝑦, 𝑧} = {(𝑃‘0), 𝑦, 𝑧})
54eqeq2d 2740 . . . . . . . . . . . 12 (𝑥 = (𝑃‘0) → (ran 𝑃 = {𝑥, 𝑦, 𝑧} ↔ ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧}))
6 preq1 4697 . . . . . . . . . . . . . 14 (𝑥 = (𝑃‘0) → {𝑥, 𝑦} = {(𝑃‘0), 𝑦})
76eleq1d 2813 . . . . . . . . . . . . 13 (𝑥 = (𝑃‘0) → ({𝑥, 𝑦} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), 𝑦} ∈ (Edg‘𝐺)))
8 preq1 4697 . . . . . . . . . . . . . 14 (𝑥 = (𝑃‘0) → {𝑥, 𝑧} = {(𝑃‘0), 𝑧})
98eleq1d 2813 . . . . . . . . . . . . 13 (𝑥 = (𝑃‘0) → ({𝑥, 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺)))
107, 93anbi12d 1439 . . . . . . . . . . . 12 (𝑥 = (𝑃‘0) → (({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))
115, 103anbi13d 1440 . . . . . . . . . . 11 (𝑥 = (𝑃‘0) → ((ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)))))
12 tpeq2 4707 . . . . . . . . . . . . 13 (𝑦 = (𝑃‘1) → {(𝑃‘0), 𝑦, 𝑧} = {(𝑃‘0), (𝑃‘1), 𝑧})
1312eqeq2d 2740 . . . . . . . . . . . 12 (𝑦 = (𝑃‘1) → (ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ↔ ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧}))
14 preq2 4698 . . . . . . . . . . . . . 14 (𝑦 = (𝑃‘1) → {(𝑃‘0), 𝑦} = {(𝑃‘0), (𝑃‘1)})
1514eleq1d 2813 . . . . . . . . . . . . 13 (𝑦 = (𝑃‘1) → ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)))
16 preq1 4697 . . . . . . . . . . . . . 14 (𝑦 = (𝑃‘1) → {𝑦, 𝑧} = {(𝑃‘1), 𝑧})
1716eleq1d 2813 . . . . . . . . . . . . 13 (𝑦 = (𝑃‘1) → ({𝑦, 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)))
1815, 173anbi13d 1440 . . . . . . . . . . . 12 (𝑦 = (𝑃‘1) → (({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺))))
1913, 183anbi13d 1440 . . . . . . . . . . 11 (𝑦 = (𝑃‘1) → ((ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)))))
20 tpeq3 4708 . . . . . . . . . . . . 13 (𝑧 = (𝑃‘2) → {(𝑃‘0), (𝑃‘1), 𝑧} = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
2120eqeq2d 2740 . . . . . . . . . . . 12 (𝑧 = (𝑃‘2) → (ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ↔ ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
22 preq2 4698 . . . . . . . . . . . . . 14 (𝑧 = (𝑃‘2) → {(𝑃‘0), 𝑧} = {(𝑃‘0), (𝑃‘2)})
2322eleq1d 2813 . . . . . . . . . . . . 13 (𝑧 = (𝑃‘2) → ({(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
24 preq2 4698 . . . . . . . . . . . . . 14 (𝑧 = (𝑃‘2) → {(𝑃‘1), 𝑧} = {(𝑃‘1), (𝑃‘2)})
2524eleq1d 2813 . . . . . . . . . . . . 13 (𝑧 = (𝑃‘2) → ({(𝑃‘1), 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
2623, 253anbi23d 1441 . . . . . . . . . . . 12 (𝑧 = (𝑃‘2) → (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
2721, 263anbi13d 1440 . . . . . . . . . . 11 (𝑧 = (𝑃‘2) → ((ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))))
28 pthiswlk 29655 . . . . . . . . . . . . . 14 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
29 eqid 2729 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
3029wlkp 29544 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
31 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
32 3nn0 12460 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℕ0
33 0elfz 13585 . . . . . . . . . . . . . . . . . . 19 (3 ∈ ℕ0 → 0 ∈ (0...3))
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . 18 0 ∈ (0...3)
35 oveq2 7395 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) = 3 → (0...(♯‘𝐹)) = (0...3))
3634, 35eleqtrrid 2835 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 3 → 0 ∈ (0...(♯‘𝐹)))
3736ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 0 ∈ (0...(♯‘𝐹)))
3831, 37ffvelcdmd 7057 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘0) ∈ (Vtx‘𝐺))
3938ex 412 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺)))
4028, 30, 393syl 18 . . . . . . . . . . . . 13 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺)))
4140adantl 481 . . . . . . . . . . . 12 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺)))
4241imp 406 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘0) ∈ (Vtx‘𝐺))
43 1nn0 12458 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
44 1le3 12393 . . . . . . . . . . . . . . . . . . 19 1 ≤ 3
45 elfz2nn0 13579 . . . . . . . . . . . . . . . . . . 19 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
4643, 32, 44, 45mpbir3an 1342 . . . . . . . . . . . . . . . . . 18 1 ∈ (0...3)
4746, 35eleqtrrid 2835 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 3 → 1 ∈ (0...(♯‘𝐹)))
4847ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 1 ∈ (0...(♯‘𝐹)))
4931, 48ffvelcdmd 7057 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘1) ∈ (Vtx‘𝐺))
5049ex 412 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺)))
5128, 30, 503syl 18 . . . . . . . . . . . . 13 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺)))
5251adantl 481 . . . . . . . . . . . 12 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺)))
5352imp 406 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘1) ∈ (Vtx‘𝐺))
54 2nn0 12459 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
55 2re 12260 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
56 3re 12266 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℝ
57 2lt3 12353 . . . . . . . . . . . . . . . . . . . 20 2 < 3
5855, 56, 57ltleii 11297 . . . . . . . . . . . . . . . . . . 19 2 ≤ 3
59 elfz2nn0 13579 . . . . . . . . . . . . . . . . . . 19 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
6054, 32, 58, 59mpbir3an 1342 . . . . . . . . . . . . . . . . . 18 2 ∈ (0...3)
6160, 35eleqtrrid 2835 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 3 → 2 ∈ (0...(♯‘𝐹)))
6261ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 2 ∈ (0...(♯‘𝐹)))
6331, 62ffvelcdmd 7057 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘2) ∈ (Vtx‘𝐺))
6463ex 412 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺)))
6528, 30, 643syl 18 . . . . . . . . . . . . 13 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺)))
6665adantl 481 . . . . . . . . . . . 12 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺)))
6766imp 406 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘2) ∈ (Vtx‘𝐺))
68 fdm 6697 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
69 elnn0uz 12838 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ ℕ0 ↔ 3 ∈ (ℤ‘0))
7032, 69mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ (ℤ‘0)
71 fzisfzounsn 13740 . . . . . . . . . . . . . . . . . . . . . . . 24 (3 ∈ (ℤ‘0) → (0...3) = ((0..^3) ∪ {3}))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (0...3) = ((0..^3) ∪ {3})
73 fzo0to3tp 13713 . . . . . . . . . . . . . . . . . . . . . . . 24 (0..^3) = {0, 1, 2}
7473uneq1i 4127 . . . . . . . . . . . . . . . . . . . . . . 23 ((0..^3) ∪ {3}) = ({0, 1, 2} ∪ {3})
7572, 74eqtri 2752 . . . . . . . . . . . . . . . . . . . . . 22 (0...3) = ({0, 1, 2} ∪ {3})
7635, 75eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → (0...(♯‘𝐹)) = ({0, 1, 2} ∪ {3}))
7776adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (0...(♯‘𝐹)) = ({0, 1, 2} ∪ {3}))
7868, 77sylan9eq 2784 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → dom 𝑃 = ({0, 1, 2} ∪ {3}))
7978imaeq2d 6031 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ dom 𝑃) = (𝑃 “ ({0, 1, 2} ∪ {3})))
80 imadmrn 6041 . . . . . . . . . . . . . . . . . 18 (𝑃 “ dom 𝑃) = ran 𝑃
81 imaundi 6122 . . . . . . . . . . . . . . . . . 18 (𝑃 “ ({0, 1, 2} ∪ {3})) = ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3}))
8279, 80, 813eqtr3g 2787 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3})))
83 ffn 6688 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹)))
8483adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝑃 Fn (0...(♯‘𝐹)))
8584, 37, 48, 62fnimatpd 6945 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ {0, 1, 2}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
86 nn0fz0 13586 . . . . . . . . . . . . . . . . . . . . . . 23 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
8732, 86mpbi 230 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ (0...3)
8887, 35eleqtrrid 2835 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → 3 ∈ (0...(♯‘𝐹)))
8988adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → 3 ∈ (0...(♯‘𝐹)))
90 fnsnfv 6940 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 Fn (0...(♯‘𝐹)) ∧ 3 ∈ (0...(♯‘𝐹))) → {(𝑃‘3)} = (𝑃 “ {3}))
9183, 89, 90syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → {(𝑃‘3)} = (𝑃 “ {3}))
9291eqcomd 2735 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ {3}) = {(𝑃‘3)})
9385, 92uneq12d 4132 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3})) = ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}))
94 fveq2 6858 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → (𝑃‘(♯‘𝐹)) = (𝑃‘3))
9594eqeq2d 2740 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3)))
96 sneq 4599 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘3) = (𝑃‘0) → {(𝑃‘3)} = {(𝑃‘0)})
9796eqcoms 2737 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘3)} = {(𝑃‘0)})
9897uneq2d 4131 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}))
99 snsstp1 4780 . . . . . . . . . . . . . . . . . . . . . . 23 {(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)}
10099a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
101 ssequn2 4152 . . . . . . . . . . . . . . . . . . . . . 22 ({(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ↔ ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
102100, 101sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
10398, 102eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
10495, 103biimtrdi 253 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
105104impcom 407 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
106105adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
10782, 93, 1063eqtrd 2768 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
108107ex 412 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
10928, 30, 1083syl 18 . . . . . . . . . . . . . 14 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
110109adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
111110imp 406 . . . . . . . . . . . 12 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
112 breq2 5111 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 3 → (1 ≤ (♯‘𝐹) ↔ 1 ≤ 3))
11344, 112mpbiri 258 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 3 → 1 ≤ (♯‘𝐹))
114113ad2antll 729 . . . . . . . . . . . . . 14 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 1 ≤ (♯‘𝐹))
1152ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝐹(Cycles‘𝐺)𝑃)
116 cyclnumvtx 29730 . . . . . . . . . . . . . 14 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))
117114, 115, 116syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘ran 𝑃) = (♯‘𝐹))
1181ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘𝐹) = 3)
119117, 118eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘ran 𝑃) = 3)
120 cycl3grtri.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ UPGraph)
121 cycl3grtrilem 47945 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
122120, 121sylanl1 680 . . . . . . . . . . . 12 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
123111, 119, 1223jca 1128 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
12411, 19, 27, 42, 53, 67, 1233rspcedvdw 3606 . . . . . . . . . 10 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ∃𝑥 ∈ (Vtx‘𝐺)∃𝑦 ∈ (Vtx‘𝐺)∃𝑧 ∈ (Vtx‘𝐺)(ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))
125 eqid 2729 . . . . . . . . . . 11 (Edg‘𝐺) = (Edg‘𝐺)
12629, 125isgrtri 47942 . . . . . . . . . 10 (ran 𝑃 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥 ∈ (Vtx‘𝐺)∃𝑦 ∈ (Vtx‘𝐺)∃𝑧 ∈ (Vtx‘𝐺)(ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))
127124, 126sylibr 234 . . . . . . . . 9 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 ∈ (GrTriangles‘𝐺))
128127exp32 420 . . . . . . . 8 ((𝜑𝐹(Paths‘𝐺)𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((♯‘𝐹) = 3 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
129128com23 86 . . . . . . 7 ((𝜑𝐹(Paths‘𝐺)𝑃) → ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ran 𝑃 ∈ (GrTriangles‘𝐺))))
130129expcom 413 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝜑 → ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ran 𝑃 ∈ (GrTriangles‘𝐺)))))
131130com24 95 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺)))))
132131imp 406 . . . 4 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
1333, 132syl 17 . . 3 (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
134133com13 88 . 2 (𝜑 → ((♯‘𝐹) = 3 → (𝐹(Cycles‘𝐺)𝑃 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
1351, 2, 134mp2d 49 1 (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cun 3912  wss 3914  {csn 4589  {cpr 4591  {ctp 4593   class class class wbr 5107  dom cdm 5638  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  cle 11209  2c2 12241  3c3 12242  0cn0 12442  cuz 12793  ...cfz 13468  ..^cfzo 13615  chash 14295  Vtxcvtx 28923  Edgcedg 28974  UPGraphcupgr 29007  Walkscwlks 29524  Pathscpths 29640  Cyclesccycls 29715  GrTrianglescgrtri 47936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-3o 8436  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-edg 28975  df-uhgr 28985  df-upgr 29009  df-wlks 29527  df-trls 29620  df-pths 29644  df-cycls 29717  df-grtri 47937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator