Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycl3grtri Structured version   Visualization version   GIF version

Theorem cycl3grtri 47930
Description: The vertices of a cycle of size 3 are a triangle in a graph. (Contributed by AV, 5-Oct-2025.)
Hypotheses
Ref Expression
cycl3grtri.g (𝜑𝐺 ∈ UPGraph)
cycl3grtri.c (𝜑𝐹(Cycles‘𝐺)𝑃)
cycl3grtri.n (𝜑 → (♯‘𝐹) = 3)
Assertion
Ref Expression
cycl3grtri (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))

Proof of Theorem cycl3grtri
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycl3grtri.n . 2 (𝜑 → (♯‘𝐹) = 3)
2 cycl3grtri.c . 2 (𝜑𝐹(Cycles‘𝐺)𝑃)
3 cyclprop 29756 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
4 tpeq1 4696 . . . . . . . . . . . . 13 (𝑥 = (𝑃‘0) → {𝑥, 𝑦, 𝑧} = {(𝑃‘0), 𝑦, 𝑧})
54eqeq2d 2740 . . . . . . . . . . . 12 (𝑥 = (𝑃‘0) → (ran 𝑃 = {𝑥, 𝑦, 𝑧} ↔ ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧}))
6 preq1 4687 . . . . . . . . . . . . . 14 (𝑥 = (𝑃‘0) → {𝑥, 𝑦} = {(𝑃‘0), 𝑦})
76eleq1d 2813 . . . . . . . . . . . . 13 (𝑥 = (𝑃‘0) → ({𝑥, 𝑦} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), 𝑦} ∈ (Edg‘𝐺)))
8 preq1 4687 . . . . . . . . . . . . . 14 (𝑥 = (𝑃‘0) → {𝑥, 𝑧} = {(𝑃‘0), 𝑧})
98eleq1d 2813 . . . . . . . . . . . . 13 (𝑥 = (𝑃‘0) → ({𝑥, 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺)))
107, 93anbi12d 1439 . . . . . . . . . . . 12 (𝑥 = (𝑃‘0) → (({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))
115, 103anbi13d 1440 . . . . . . . . . . 11 (𝑥 = (𝑃‘0) → ((ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)))))
12 tpeq2 4697 . . . . . . . . . . . . 13 (𝑦 = (𝑃‘1) → {(𝑃‘0), 𝑦, 𝑧} = {(𝑃‘0), (𝑃‘1), 𝑧})
1312eqeq2d 2740 . . . . . . . . . . . 12 (𝑦 = (𝑃‘1) → (ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ↔ ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧}))
14 preq2 4688 . . . . . . . . . . . . . 14 (𝑦 = (𝑃‘1) → {(𝑃‘0), 𝑦} = {(𝑃‘0), (𝑃‘1)})
1514eleq1d 2813 . . . . . . . . . . . . 13 (𝑦 = (𝑃‘1) → ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)))
16 preq1 4687 . . . . . . . . . . . . . 14 (𝑦 = (𝑃‘1) → {𝑦, 𝑧} = {(𝑃‘1), 𝑧})
1716eleq1d 2813 . . . . . . . . . . . . 13 (𝑦 = (𝑃‘1) → ({𝑦, 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)))
1815, 173anbi13d 1440 . . . . . . . . . . . 12 (𝑦 = (𝑃‘1) → (({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺))))
1913, 183anbi13d 1440 . . . . . . . . . . 11 (𝑦 = (𝑃‘1) → ((ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)))))
20 tpeq3 4698 . . . . . . . . . . . . 13 (𝑧 = (𝑃‘2) → {(𝑃‘0), (𝑃‘1), 𝑧} = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
2120eqeq2d 2740 . . . . . . . . . . . 12 (𝑧 = (𝑃‘2) → (ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ↔ ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
22 preq2 4688 . . . . . . . . . . . . . 14 (𝑧 = (𝑃‘2) → {(𝑃‘0), 𝑧} = {(𝑃‘0), (𝑃‘2)})
2322eleq1d 2813 . . . . . . . . . . . . 13 (𝑧 = (𝑃‘2) → ({(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
24 preq2 4688 . . . . . . . . . . . . . 14 (𝑧 = (𝑃‘2) → {(𝑃‘1), 𝑧} = {(𝑃‘1), (𝑃‘2)})
2524eleq1d 2813 . . . . . . . . . . . . 13 (𝑧 = (𝑃‘2) → ({(𝑃‘1), 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
2623, 253anbi23d 1441 . . . . . . . . . . . 12 (𝑧 = (𝑃‘2) → (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
2721, 263anbi13d 1440 . . . . . . . . . . 11 (𝑧 = (𝑃‘2) → ((ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))))
28 pthiswlk 29688 . . . . . . . . . . . . . 14 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
29 eqid 2729 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
3029wlkp 29580 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
31 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
32 3nn0 12420 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℕ0
33 0elfz 13545 . . . . . . . . . . . . . . . . . . 19 (3 ∈ ℕ0 → 0 ∈ (0...3))
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . 18 0 ∈ (0...3)
35 oveq2 7361 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) = 3 → (0...(♯‘𝐹)) = (0...3))
3634, 35eleqtrrid 2835 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 3 → 0 ∈ (0...(♯‘𝐹)))
3736ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 0 ∈ (0...(♯‘𝐹)))
3831, 37ffvelcdmd 7023 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘0) ∈ (Vtx‘𝐺))
3938ex 412 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺)))
4028, 30, 393syl 18 . . . . . . . . . . . . 13 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺)))
4140adantl 481 . . . . . . . . . . . 12 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺)))
4241imp 406 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘0) ∈ (Vtx‘𝐺))
43 1nn0 12418 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
44 1le3 12353 . . . . . . . . . . . . . . . . . . 19 1 ≤ 3
45 elfz2nn0 13539 . . . . . . . . . . . . . . . . . . 19 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
4643, 32, 44, 45mpbir3an 1342 . . . . . . . . . . . . . . . . . 18 1 ∈ (0...3)
4746, 35eleqtrrid 2835 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 3 → 1 ∈ (0...(♯‘𝐹)))
4847ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 1 ∈ (0...(♯‘𝐹)))
4931, 48ffvelcdmd 7023 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘1) ∈ (Vtx‘𝐺))
5049ex 412 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺)))
5128, 30, 503syl 18 . . . . . . . . . . . . 13 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺)))
5251adantl 481 . . . . . . . . . . . 12 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺)))
5352imp 406 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘1) ∈ (Vtx‘𝐺))
54 2nn0 12419 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
55 2re 12220 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
56 3re 12226 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℝ
57 2lt3 12313 . . . . . . . . . . . . . . . . . . . 20 2 < 3
5855, 56, 57ltleii 11257 . . . . . . . . . . . . . . . . . . 19 2 ≤ 3
59 elfz2nn0 13539 . . . . . . . . . . . . . . . . . . 19 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
6054, 32, 58, 59mpbir3an 1342 . . . . . . . . . . . . . . . . . 18 2 ∈ (0...3)
6160, 35eleqtrrid 2835 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 3 → 2 ∈ (0...(♯‘𝐹)))
6261ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 2 ∈ (0...(♯‘𝐹)))
6331, 62ffvelcdmd 7023 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘2) ∈ (Vtx‘𝐺))
6463ex 412 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺)))
6528, 30, 643syl 18 . . . . . . . . . . . . 13 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺)))
6665adantl 481 . . . . . . . . . . . 12 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺)))
6766imp 406 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘2) ∈ (Vtx‘𝐺))
68 fdm 6665 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
69 elnn0uz 12798 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ ℕ0 ↔ 3 ∈ (ℤ‘0))
7032, 69mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ (ℤ‘0)
71 fzisfzounsn 13700 . . . . . . . . . . . . . . . . . . . . . . . 24 (3 ∈ (ℤ‘0) → (0...3) = ((0..^3) ∪ {3}))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (0...3) = ((0..^3) ∪ {3})
73 fzo0to3tp 13673 . . . . . . . . . . . . . . . . . . . . . . . 24 (0..^3) = {0, 1, 2}
7473uneq1i 4117 . . . . . . . . . . . . . . . . . . . . . . 23 ((0..^3) ∪ {3}) = ({0, 1, 2} ∪ {3})
7572, 74eqtri 2752 . . . . . . . . . . . . . . . . . . . . . 22 (0...3) = ({0, 1, 2} ∪ {3})
7635, 75eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → (0...(♯‘𝐹)) = ({0, 1, 2} ∪ {3}))
7776adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (0...(♯‘𝐹)) = ({0, 1, 2} ∪ {3}))
7868, 77sylan9eq 2784 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → dom 𝑃 = ({0, 1, 2} ∪ {3}))
7978imaeq2d 6015 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ dom 𝑃) = (𝑃 “ ({0, 1, 2} ∪ {3})))
80 imadmrn 6025 . . . . . . . . . . . . . . . . . 18 (𝑃 “ dom 𝑃) = ran 𝑃
81 imaundi 6102 . . . . . . . . . . . . . . . . . 18 (𝑃 “ ({0, 1, 2} ∪ {3})) = ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3}))
8279, 80, 813eqtr3g 2787 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3})))
83 ffn 6656 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹)))
8483adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝑃 Fn (0...(♯‘𝐹)))
8584, 37, 48, 62fnimatpd 6911 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ {0, 1, 2}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
86 nn0fz0 13546 . . . . . . . . . . . . . . . . . . . . . . 23 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
8732, 86mpbi 230 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ (0...3)
8887, 35eleqtrrid 2835 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → 3 ∈ (0...(♯‘𝐹)))
8988adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → 3 ∈ (0...(♯‘𝐹)))
90 fnsnfv 6906 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 Fn (0...(♯‘𝐹)) ∧ 3 ∈ (0...(♯‘𝐹))) → {(𝑃‘3)} = (𝑃 “ {3}))
9183, 89, 90syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → {(𝑃‘3)} = (𝑃 “ {3}))
9291eqcomd 2735 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ {3}) = {(𝑃‘3)})
9385, 92uneq12d 4122 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3})) = ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}))
94 fveq2 6826 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → (𝑃‘(♯‘𝐹)) = (𝑃‘3))
9594eqeq2d 2740 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3)))
96 sneq 4589 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘3) = (𝑃‘0) → {(𝑃‘3)} = {(𝑃‘0)})
9796eqcoms 2737 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘3)} = {(𝑃‘0)})
9897uneq2d 4121 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}))
99 snsstp1 4770 . . . . . . . . . . . . . . . . . . . . . . 23 {(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)}
10099a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
101 ssequn2 4142 . . . . . . . . . . . . . . . . . . . . . 22 ({(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ↔ ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
102100, 101sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
10398, 102eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
10495, 103biimtrdi 253 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
105104impcom 407 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
106105adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
10782, 93, 1063eqtrd 2768 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
108107ex 412 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
10928, 30, 1083syl 18 . . . . . . . . . . . . . 14 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
110109adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
111110imp 406 . . . . . . . . . . . 12 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
112 breq2 5099 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 3 → (1 ≤ (♯‘𝐹) ↔ 1 ≤ 3))
11344, 112mpbiri 258 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 3 → 1 ≤ (♯‘𝐹))
114113ad2antll 729 . . . . . . . . . . . . . 14 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 1 ≤ (♯‘𝐹))
1152ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝐹(Cycles‘𝐺)𝑃)
116 cyclnumvtx 29763 . . . . . . . . . . . . . 14 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))
117114, 115, 116syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘ran 𝑃) = (♯‘𝐹))
1181ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘𝐹) = 3)
119117, 118eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘ran 𝑃) = 3)
120 cycl3grtri.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ UPGraph)
121 cycl3grtrilem 47929 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
122120, 121sylanl1 680 . . . . . . . . . . . 12 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
123111, 119, 1223jca 1128 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
12411, 19, 27, 42, 53, 67, 1233rspcedvdw 3597 . . . . . . . . . 10 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ∃𝑥 ∈ (Vtx‘𝐺)∃𝑦 ∈ (Vtx‘𝐺)∃𝑧 ∈ (Vtx‘𝐺)(ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))
125 eqid 2729 . . . . . . . . . . 11 (Edg‘𝐺) = (Edg‘𝐺)
12629, 125isgrtri 47926 . . . . . . . . . 10 (ran 𝑃 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥 ∈ (Vtx‘𝐺)∃𝑦 ∈ (Vtx‘𝐺)∃𝑧 ∈ (Vtx‘𝐺)(ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))
127124, 126sylibr 234 . . . . . . . . 9 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 ∈ (GrTriangles‘𝐺))
128127exp32 420 . . . . . . . 8 ((𝜑𝐹(Paths‘𝐺)𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((♯‘𝐹) = 3 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
129128com23 86 . . . . . . 7 ((𝜑𝐹(Paths‘𝐺)𝑃) → ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ran 𝑃 ∈ (GrTriangles‘𝐺))))
130129expcom 413 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝜑 → ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ran 𝑃 ∈ (GrTriangles‘𝐺)))))
131130com24 95 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺)))))
132131imp 406 . . . 4 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
1333, 132syl 17 . . 3 (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
134133com13 88 . 2 (𝜑 → ((♯‘𝐹) = 3 → (𝐹(Cycles‘𝐺)𝑃 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
1351, 2, 134mp2d 49 1 (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cun 3903  wss 3905  {csn 4579  {cpr 4581  {ctp 4583   class class class wbr 5095  dom cdm 5623  ran crn 5624  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029  cle 11169  2c2 12201  3c3 12202  0cn0 12402  cuz 12753  ...cfz 13428  ..^cfzo 13575  chash 14255  Vtxcvtx 28959  Edgcedg 29010  UPGraphcupgr 29043  Walkscwlks 29560  Pathscpths 29673  Cyclesccycls 29748  GrTrianglescgrtri 47920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-3o 8397  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-edg 29011  df-uhgr 29021  df-upgr 29045  df-wlks 29563  df-trls 29654  df-pths 29677  df-cycls 29750  df-grtri 47921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator