Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycl3grtri Structured version   Visualization version   GIF version

Theorem cycl3grtri 47860
Description: The vertices of a cycle of size 3 are a triangle in a graph. (Contributed by AV, 5-Oct-2025.)
Hypotheses
Ref Expression
cycl3grtri.g (𝜑𝐺 ∈ UPGraph)
cycl3grtri.c (𝜑𝐹(Cycles‘𝐺)𝑃)
cycl3grtri.n (𝜑 → (♯‘𝐹) = 3)
Assertion
Ref Expression
cycl3grtri (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))

Proof of Theorem cycl3grtri
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycl3grtri.n . 2 (𝜑 → (♯‘𝐹) = 3)
2 cycl3grtri.c . 2 (𝜑𝐹(Cycles‘𝐺)𝑃)
3 cyclprop 29760 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
4 tpeq1 4724 . . . . . . . . . . . . 13 (𝑥 = (𝑃‘0) → {𝑥, 𝑦, 𝑧} = {(𝑃‘0), 𝑦, 𝑧})
54eqeq2d 2745 . . . . . . . . . . . 12 (𝑥 = (𝑃‘0) → (ran 𝑃 = {𝑥, 𝑦, 𝑧} ↔ ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧}))
6 preq1 4715 . . . . . . . . . . . . . 14 (𝑥 = (𝑃‘0) → {𝑥, 𝑦} = {(𝑃‘0), 𝑦})
76eleq1d 2818 . . . . . . . . . . . . 13 (𝑥 = (𝑃‘0) → ({𝑥, 𝑦} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), 𝑦} ∈ (Edg‘𝐺)))
8 preq1 4715 . . . . . . . . . . . . . 14 (𝑥 = (𝑃‘0) → {𝑥, 𝑧} = {(𝑃‘0), 𝑧})
98eleq1d 2818 . . . . . . . . . . . . 13 (𝑥 = (𝑃‘0) → ({𝑥, 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺)))
107, 93anbi12d 1438 . . . . . . . . . . . 12 (𝑥 = (𝑃‘0) → (({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))
115, 103anbi13d 1439 . . . . . . . . . . 11 (𝑥 = (𝑃‘0) → ((ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)))))
12 tpeq2 4725 . . . . . . . . . . . . 13 (𝑦 = (𝑃‘1) → {(𝑃‘0), 𝑦, 𝑧} = {(𝑃‘0), (𝑃‘1), 𝑧})
1312eqeq2d 2745 . . . . . . . . . . . 12 (𝑦 = (𝑃‘1) → (ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ↔ ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧}))
14 preq2 4716 . . . . . . . . . . . . . 14 (𝑦 = (𝑃‘1) → {(𝑃‘0), 𝑦} = {(𝑃‘0), (𝑃‘1)})
1514eleq1d 2818 . . . . . . . . . . . . 13 (𝑦 = (𝑃‘1) → ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)))
16 preq1 4715 . . . . . . . . . . . . . 14 (𝑦 = (𝑃‘1) → {𝑦, 𝑧} = {(𝑃‘1), 𝑧})
1716eleq1d 2818 . . . . . . . . . . . . 13 (𝑦 = (𝑃‘1) → ({𝑦, 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)))
1815, 173anbi13d 1439 . . . . . . . . . . . 12 (𝑦 = (𝑃‘1) → (({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺))))
1913, 183anbi13d 1439 . . . . . . . . . . 11 (𝑦 = (𝑃‘1) → ((ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)))))
20 tpeq3 4726 . . . . . . . . . . . . 13 (𝑧 = (𝑃‘2) → {(𝑃‘0), (𝑃‘1), 𝑧} = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
2120eqeq2d 2745 . . . . . . . . . . . 12 (𝑧 = (𝑃‘2) → (ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ↔ ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
22 preq2 4716 . . . . . . . . . . . . . 14 (𝑧 = (𝑃‘2) → {(𝑃‘0), 𝑧} = {(𝑃‘0), (𝑃‘2)})
2322eleq1d 2818 . . . . . . . . . . . . 13 (𝑧 = (𝑃‘2) → ({(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
24 preq2 4716 . . . . . . . . . . . . . 14 (𝑧 = (𝑃‘2) → {(𝑃‘1), 𝑧} = {(𝑃‘1), (𝑃‘2)})
2524eleq1d 2818 . . . . . . . . . . . . 13 (𝑧 = (𝑃‘2) → ({(𝑃‘1), 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
2623, 253anbi23d 1440 . . . . . . . . . . . 12 (𝑧 = (𝑃‘2) → (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
2721, 263anbi13d 1439 . . . . . . . . . . 11 (𝑧 = (𝑃‘2) → ((ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))))
28 pthiswlk 29692 . . . . . . . . . . . . . 14 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
29 eqid 2734 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
3029wlkp 29581 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
31 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
32 3nn0 12528 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℕ0
33 0elfz 13647 . . . . . . . . . . . . . . . . . . 19 (3 ∈ ℕ0 → 0 ∈ (0...3))
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . 18 0 ∈ (0...3)
35 oveq2 7422 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) = 3 → (0...(♯‘𝐹)) = (0...3))
3634, 35eleqtrrid 2840 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 3 → 0 ∈ (0...(♯‘𝐹)))
3736ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 0 ∈ (0...(♯‘𝐹)))
3831, 37ffvelcdmd 7086 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘0) ∈ (Vtx‘𝐺))
3938ex 412 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺)))
4028, 30, 393syl 18 . . . . . . . . . . . . 13 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺)))
4140adantl 481 . . . . . . . . . . . 12 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺)))
4241imp 406 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘0) ∈ (Vtx‘𝐺))
43 1nn0 12526 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
44 1le3 12461 . . . . . . . . . . . . . . . . . . 19 1 ≤ 3
45 elfz2nn0 13641 . . . . . . . . . . . . . . . . . . 19 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
4643, 32, 44, 45mpbir3an 1341 . . . . . . . . . . . . . . . . . 18 1 ∈ (0...3)
4746, 35eleqtrrid 2840 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 3 → 1 ∈ (0...(♯‘𝐹)))
4847ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 1 ∈ (0...(♯‘𝐹)))
4931, 48ffvelcdmd 7086 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘1) ∈ (Vtx‘𝐺))
5049ex 412 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺)))
5128, 30, 503syl 18 . . . . . . . . . . . . 13 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺)))
5251adantl 481 . . . . . . . . . . . 12 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺)))
5352imp 406 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘1) ∈ (Vtx‘𝐺))
54 2nn0 12527 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
55 2re 12323 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
56 3re 12329 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℝ
57 2lt3 12421 . . . . . . . . . . . . . . . . . . . 20 2 < 3
5855, 56, 57ltleii 11367 . . . . . . . . . . . . . . . . . . 19 2 ≤ 3
59 elfz2nn0 13641 . . . . . . . . . . . . . . . . . . 19 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
6054, 32, 58, 59mpbir3an 1341 . . . . . . . . . . . . . . . . . 18 2 ∈ (0...3)
6160, 35eleqtrrid 2840 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) = 3 → 2 ∈ (0...(♯‘𝐹)))
6261ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 2 ∈ (0...(♯‘𝐹)))
6331, 62ffvelcdmd 7086 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘2) ∈ (Vtx‘𝐺))
6463ex 412 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺)))
6528, 30, 643syl 18 . . . . . . . . . . . . 13 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺)))
6665adantl 481 . . . . . . . . . . . 12 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺)))
6766imp 406 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘2) ∈ (Vtx‘𝐺))
68 fdm 6726 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
69 elnn0uz 12906 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ ℕ0 ↔ 3 ∈ (ℤ‘0))
7032, 69mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ (ℤ‘0)
71 fzisfzounsn 13801 . . . . . . . . . . . . . . . . . . . . . . . 24 (3 ∈ (ℤ‘0) → (0...3) = ((0..^3) ∪ {3}))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (0...3) = ((0..^3) ∪ {3})
73 fzo0to3tp 13774 . . . . . . . . . . . . . . . . . . . . . . . 24 (0..^3) = {0, 1, 2}
7473uneq1i 4146 . . . . . . . . . . . . . . . . . . . . . . 23 ((0..^3) ∪ {3}) = ({0, 1, 2} ∪ {3})
7572, 74eqtri 2757 . . . . . . . . . . . . . . . . . . . . . 22 (0...3) = ({0, 1, 2} ∪ {3})
7635, 75eqtrdi 2785 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → (0...(♯‘𝐹)) = ({0, 1, 2} ∪ {3}))
7776adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (0...(♯‘𝐹)) = ({0, 1, 2} ∪ {3}))
7868, 77sylan9eq 2789 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → dom 𝑃 = ({0, 1, 2} ∪ {3}))
7978imaeq2d 6060 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ dom 𝑃) = (𝑃 “ ({0, 1, 2} ∪ {3})))
80 imadmrn 6070 . . . . . . . . . . . . . . . . . 18 (𝑃 “ dom 𝑃) = ran 𝑃
81 imaundi 6151 . . . . . . . . . . . . . . . . . 18 (𝑃 “ ({0, 1, 2} ∪ {3})) = ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3}))
8279, 80, 813eqtr3g 2792 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3})))
83 ffn 6717 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹)))
8483adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝑃 Fn (0...(♯‘𝐹)))
8584, 37, 48, 62fnimatpd 6974 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ {0, 1, 2}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
86 nn0fz0 13648 . . . . . . . . . . . . . . . . . . . . . . 23 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
8732, 86mpbi 230 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ (0...3)
8887, 35eleqtrrid 2840 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → 3 ∈ (0...(♯‘𝐹)))
8988adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → 3 ∈ (0...(♯‘𝐹)))
90 fnsnfv 6969 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 Fn (0...(♯‘𝐹)) ∧ 3 ∈ (0...(♯‘𝐹))) → {(𝑃‘3)} = (𝑃 “ {3}))
9183, 89, 90syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → {(𝑃‘3)} = (𝑃 “ {3}))
9291eqcomd 2740 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ {3}) = {(𝑃‘3)})
9385, 92uneq12d 4151 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3})) = ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}))
94 fveq2 6887 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → (𝑃‘(♯‘𝐹)) = (𝑃‘3))
9594eqeq2d 2745 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3)))
96 sneq 4618 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘3) = (𝑃‘0) → {(𝑃‘3)} = {(𝑃‘0)})
9796eqcoms 2742 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘3)} = {(𝑃‘0)})
9897uneq2d 4150 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}))
99 snsstp1 4798 . . . . . . . . . . . . . . . . . . . . . . 23 {(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)}
10099a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
101 ssequn2 4171 . . . . . . . . . . . . . . . . . . . . . 22 ({(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ↔ ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
102100, 101sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
10398, 102eqtrd 2769 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
10495, 103biimtrdi 253 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
105104impcom 407 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
106105adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
10782, 93, 1063eqtrd 2773 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
108107ex 412 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
10928, 30, 1083syl 18 . . . . . . . . . . . . . 14 (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
110109adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}))
111110imp 406 . . . . . . . . . . . 12 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})
112 breq2 5129 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 3 → (1 ≤ (♯‘𝐹) ↔ 1 ≤ 3))
11344, 112mpbiri 258 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 3 → 1 ≤ (♯‘𝐹))
114113ad2antll 729 . . . . . . . . . . . . . 14 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 1 ≤ (♯‘𝐹))
1152ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝐹(Cycles‘𝐺)𝑃)
116 cyclnumvtx 29767 . . . . . . . . . . . . . 14 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))
117114, 115, 116syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘ran 𝑃) = (♯‘𝐹))
1181ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘𝐹) = 3)
119117, 118eqtrd 2769 . . . . . . . . . . . 12 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘ran 𝑃) = 3)
120 cycl3grtri.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ UPGraph)
121 cycl3grtrilem 47859 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
122120, 121sylanl1 680 . . . . . . . . . . . 12 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
123111, 119, 1223jca 1128 . . . . . . . . . . 11 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
12411, 19, 27, 42, 53, 67, 1233rspcedvdw 3624 . . . . . . . . . 10 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ∃𝑥 ∈ (Vtx‘𝐺)∃𝑦 ∈ (Vtx‘𝐺)∃𝑧 ∈ (Vtx‘𝐺)(ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))
125 eqid 2734 . . . . . . . . . . 11 (Edg‘𝐺) = (Edg‘𝐺)
12629, 125isgrtri 47856 . . . . . . . . . 10 (ran 𝑃 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥 ∈ (Vtx‘𝐺)∃𝑦 ∈ (Vtx‘𝐺)∃𝑧 ∈ (Vtx‘𝐺)(ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))
127124, 126sylibr 234 . . . . . . . . 9 (((𝜑𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 ∈ (GrTriangles‘𝐺))
128127exp32 420 . . . . . . . 8 ((𝜑𝐹(Paths‘𝐺)𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((♯‘𝐹) = 3 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
129128com23 86 . . . . . . 7 ((𝜑𝐹(Paths‘𝐺)𝑃) → ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ran 𝑃 ∈ (GrTriangles‘𝐺))))
130129expcom 413 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝜑 → ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ran 𝑃 ∈ (GrTriangles‘𝐺)))))
131130com24 95 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺)))))
132131imp 406 . . . 4 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
1333, 132syl 17 . . 3 (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
134133com13 88 . 2 (𝜑 → ((♯‘𝐹) = 3 → (𝐹(Cycles‘𝐺)𝑃 → ran 𝑃 ∈ (GrTriangles‘𝐺))))
1351, 2, 134mp2d 49 1 (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  cun 3931  wss 3933  {csn 4608  {cpr 4610  {ctp 4612   class class class wbr 5125  dom cdm 5667  ran crn 5668  cima 5670   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  0cc0 11138  1c1 11139  cle 11279  2c2 12304  3c3 12305  0cn0 12510  cuz 12861  ...cfz 13530  ..^cfzo 13677  chash 14352  Vtxcvtx 28960  Edgcedg 29011  UPGraphcupgr 29044  Walkscwlks 29561  Pathscpths 29677  Cyclesccycls 29752  GrTrianglescgrtri 47850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-3o 8491  df-oadd 8493  df-er 8728  df-map 8851  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-xnn0 12584  df-z 12598  df-uz 12862  df-fz 13531  df-fzo 13678  df-hash 14353  df-word 14536  df-edg 29012  df-uhgr 29022  df-upgr 29046  df-wlks 29564  df-trls 29657  df-pths 29681  df-cycls 29754  df-grtri 47851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator