| Step | Hyp | Ref
| Expression |
| 1 | | cycl3grtri.n |
. 2
⊢ (𝜑 → (♯‘𝐹) = 3) |
| 2 | | cycl3grtri.c |
. 2
⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) |
| 3 | | cyclprop 29760 |
. . . 4
⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
| 4 | | tpeq1 4724 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑃‘0) → {𝑥, 𝑦, 𝑧} = {(𝑃‘0), 𝑦, 𝑧}) |
| 5 | 4 | eqeq2d 2745 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑃‘0) → (ran 𝑃 = {𝑥, 𝑦, 𝑧} ↔ ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧})) |
| 6 | | preq1 4715 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑃‘0) → {𝑥, 𝑦} = {(𝑃‘0), 𝑦}) |
| 7 | 6 | eleq1d 2818 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑃‘0) → ({𝑥, 𝑦} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), 𝑦} ∈ (Edg‘𝐺))) |
| 8 | | preq1 4715 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑃‘0) → {𝑥, 𝑧} = {(𝑃‘0), 𝑧}) |
| 9 | 8 | eleq1d 2818 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑃‘0) → ({𝑥, 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺))) |
| 10 | 7, 9 | 3anbi12d 1438 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑃‘0) → (({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)))) |
| 11 | 5, 10 | 3anbi13d 1439 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑃‘0) → ((ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))))) |
| 12 | | tpeq2 4725 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑃‘1) → {(𝑃‘0), 𝑦, 𝑧} = {(𝑃‘0), (𝑃‘1), 𝑧}) |
| 13 | 12 | eqeq2d 2745 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑃‘1) → (ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ↔ ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧})) |
| 14 | | preq2 4716 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑃‘1) → {(𝑃‘0), 𝑦} = {(𝑃‘0), (𝑃‘1)}) |
| 15 | 14 | eleq1d 2818 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑃‘1) → ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺))) |
| 16 | | preq1 4715 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑃‘1) → {𝑦, 𝑧} = {(𝑃‘1), 𝑧}) |
| 17 | 16 | eleq1d 2818 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑃‘1) → ({𝑦, 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺))) |
| 18 | 15, 17 | 3anbi13d 1439 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑃‘1) → (({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)))) |
| 19 | 13, 18 | 3anbi13d 1439 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑃‘1) → ((ran 𝑃 = {(𝑃‘0), 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), 𝑦} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺))))) |
| 20 | | tpeq3 4726 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑃‘2) → {(𝑃‘0), (𝑃‘1), 𝑧} = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}) |
| 21 | 20 | eqeq2d 2745 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑃‘2) → (ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ↔ ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})) |
| 22 | | preq2 4716 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑃‘2) → {(𝑃‘0), 𝑧} = {(𝑃‘0), (𝑃‘2)}) |
| 23 | 22 | eleq1d 2818 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑃‘2) → ({(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺))) |
| 24 | | preq2 4716 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑃‘2) → {(𝑃‘1), 𝑧} = {(𝑃‘1), (𝑃‘2)}) |
| 25 | 24 | eleq1d 2818 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑃‘2) → ({(𝑃‘1), 𝑧} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))) |
| 26 | 23, 25 | 3anbi23d 1440 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑃‘2) → (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺)) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))) |
| 27 | 21, 26 | 3anbi13d 1439 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑃‘2) → ((ran 𝑃 = {(𝑃‘0), (𝑃‘1), 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), 𝑧} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), 𝑧} ∈ (Edg‘𝐺))) ↔ (ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))) |
| 28 | | pthiswlk 29692 |
. . . . . . . . . . . . . 14
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| 29 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 30 | 29 | wlkp 29581 |
. . . . . . . . . . . . . 14
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 31 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 32 | | 3nn0 12528 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 ∈
ℕ0 |
| 33 | | 0elfz 13647 |
. . . . . . . . . . . . . . . . . . 19
⊢ (3 ∈
ℕ0 → 0 ∈ (0...3)) |
| 34 | 32, 33 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
(0...3) |
| 35 | | oveq2 7422 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝐹) =
3 → (0...(♯‘𝐹)) = (0...3)) |
| 36 | 34, 35 | eleqtrrid 2840 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
3 → 0 ∈ (0...(♯‘𝐹))) |
| 37 | 36 | ad2antll 729 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 0 ∈
(0...(♯‘𝐹))) |
| 38 | 31, 37 | ffvelcdmd 7086 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘0) ∈ (Vtx‘𝐺)) |
| 39 | 38 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺))) |
| 40 | 28, 30, 39 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺))) |
| 41 | 40 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ∈ (Vtx‘𝐺))) |
| 42 | 41 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘0) ∈ (Vtx‘𝐺)) |
| 43 | | 1nn0 12526 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℕ0 |
| 44 | | 1le3 12461 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ≤
3 |
| 45 | | elfz2nn0 13641 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1 ∈
(0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0
∧ 1 ≤ 3)) |
| 46 | 43, 32, 44, 45 | mpbir3an 1341 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
(0...3) |
| 47 | 46, 35 | eleqtrrid 2840 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
3 → 1 ∈ (0...(♯‘𝐹))) |
| 48 | 47 | ad2antll 729 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 1 ∈
(0...(♯‘𝐹))) |
| 49 | 31, 48 | ffvelcdmd 7086 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘1) ∈ (Vtx‘𝐺)) |
| 50 | 49 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺))) |
| 51 | 28, 30, 50 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺))) |
| 52 | 51 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ∈ (Vtx‘𝐺))) |
| 53 | 52 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘1) ∈ (Vtx‘𝐺)) |
| 54 | | 2nn0 12527 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℕ0 |
| 55 | | 2re 12323 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℝ |
| 56 | | 3re 12329 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 3 ∈
ℝ |
| 57 | | 2lt3 12421 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 <
3 |
| 58 | 55, 56, 57 | ltleii 11367 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ≤
3 |
| 59 | | elfz2nn0 13641 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ∈
(0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0
∧ 2 ≤ 3)) |
| 60 | 54, 32, 58, 59 | mpbir3an 1341 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
(0...3) |
| 61 | 60, 35 | eleqtrrid 2840 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐹) =
3 → 2 ∈ (0...(♯‘𝐹))) |
| 62 | 61 | ad2antll 729 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 2 ∈
(0...(♯‘𝐹))) |
| 63 | 31, 62 | ffvelcdmd 7086 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘2) ∈ (Vtx‘𝐺)) |
| 64 | 63 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺))) |
| 65 | 28, 30, 64 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺))) |
| 66 | 65 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ∈ (Vtx‘𝐺))) |
| 67 | 66 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃‘2) ∈ (Vtx‘𝐺)) |
| 68 | | fdm 6726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹))) |
| 69 | | elnn0uz 12906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (3 ∈
ℕ0 ↔ 3 ∈
(ℤ≥‘0)) |
| 70 | 32, 69 | mpbi 230 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 3 ∈
(ℤ≥‘0) |
| 71 | | fzisfzounsn 13801 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (3 ∈
(ℤ≥‘0) → (0...3) = ((0..^3) ∪
{3})) |
| 72 | 70, 71 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0...3) =
((0..^3) ∪ {3}) |
| 73 | | fzo0to3tp 13774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0..^3) =
{0, 1, 2} |
| 74 | 73 | uneq1i 4146 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((0..^3)
∪ {3}) = ({0, 1, 2} ∪ {3}) |
| 75 | 72, 74 | eqtri 2757 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0...3) =
({0, 1, 2} ∪ {3}) |
| 76 | 35, 75 | eqtrdi 2785 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝐹) =
3 → (0...(♯‘𝐹)) = ({0, 1, 2} ∪ {3})) |
| 77 | 76 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (0...(♯‘𝐹)) = ({0, 1, 2} ∪
{3})) |
| 78 | 68, 77 | sylan9eq 2789 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → dom 𝑃 = ({0, 1, 2} ∪ {3})) |
| 79 | 78 | imaeq2d 6060 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ dom 𝑃) = (𝑃 “ ({0, 1, 2} ∪
{3}))) |
| 80 | | imadmrn 6070 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 “ dom 𝑃) = ran 𝑃 |
| 81 | | imaundi 6151 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 “ ({0, 1, 2} ∪ {3}))
= ((𝑃 “ {0, 1, 2})
∪ (𝑃 “
{3})) |
| 82 | 79, 80, 81 | 3eqtr3g 2792 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3}))) |
| 83 | | ffn 6717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹))) |
| 84 | 83 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝑃 Fn (0...(♯‘𝐹))) |
| 85 | 84, 37, 48, 62 | fnimatpd 6974 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ {0, 1, 2}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}) |
| 86 | | nn0fz0 13648 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (3 ∈
ℕ0 ↔ 3 ∈ (0...3)) |
| 87 | 32, 86 | mpbi 230 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 3 ∈
(0...3) |
| 88 | 87, 35 | eleqtrrid 2840 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝐹) =
3 → 3 ∈ (0...(♯‘𝐹))) |
| 89 | 88 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → 3 ∈
(0...(♯‘𝐹))) |
| 90 | | fnsnfv 6969 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃 Fn (0...(♯‘𝐹)) ∧ 3 ∈
(0...(♯‘𝐹)))
→ {(𝑃‘3)} =
(𝑃 “
{3})) |
| 91 | 83, 89, 90 | syl2an 596 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → {(𝑃‘3)} = (𝑃 “ {3})) |
| 92 | 91 | eqcomd 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (𝑃 “ {3}) = {(𝑃‘3)}) |
| 93 | 85, 92 | uneq12d 4151 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ((𝑃 “ {0, 1, 2}) ∪ (𝑃 “ {3})) = ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)})) |
| 94 | | fveq2 6887 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝐹) =
3 → (𝑃‘(♯‘𝐹)) = (𝑃‘3)) |
| 95 | 94 | eqeq2d 2745 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝐹) =
3 → ((𝑃‘0) =
(𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3))) |
| 96 | | sneq 4618 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃‘3) = (𝑃‘0) → {(𝑃‘3)} = {(𝑃‘0)}) |
| 97 | 96 | eqcoms 2742 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃‘0) = (𝑃‘3) → {(𝑃‘3)} = {(𝑃‘0)}) |
| 98 | 97 | uneq2d 4150 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)})) |
| 99 | | snsstp1 4798 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)} |
| 100 | 99 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)}) |
| 101 | | ssequn2 4171 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({(𝑃‘0)} ⊆ {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ↔ ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}) |
| 102 | 100, 101 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘0)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}) |
| 103 | 98, 102 | eqtrd 2769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}) |
| 104 | 95, 103 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝐹) =
3 → ((𝑃‘0) =
(𝑃‘(♯‘𝐹)) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})) |
| 105 | 104 | impcom 407 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}) |
| 106 | 105 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∪ {(𝑃‘3)}) = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}) |
| 107 | 82, 93, 106 | 3eqtrd 2773 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}) |
| 108 | 107 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})) |
| 109 | 28, 30, 108 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝐹(Paths‘𝐺)𝑃 → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})) |
| 110 | 109 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) → (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)})) |
| 111 | 110 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)}) |
| 112 | | breq2 5129 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹) =
3 → (1 ≤ (♯‘𝐹) ↔ 1 ≤ 3)) |
| 113 | 44, 112 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐹) =
3 → 1 ≤ (♯‘𝐹)) |
| 114 | 113 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 1 ≤ (♯‘𝐹)) |
| 115 | 2 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → 𝐹(Cycles‘𝐺)𝑃) |
| 116 | | cyclnumvtx 29767 |
. . . . . . . . . . . . . 14
⊢ ((1 ≤
(♯‘𝐹) ∧
𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹)) |
| 117 | 114, 115,
116 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘ran 𝑃) = (♯‘𝐹)) |
| 118 | 1 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘𝐹) = 3) |
| 119 | 117, 118 | eqtrd 2769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (♯‘ran 𝑃) = 3) |
| 120 | | cycl3grtri.g |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| 121 | | cycl3grtrilem 47859 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))) |
| 122 | 120, 121 | sylanl1 680 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))) |
| 123 | 111, 119,
122 | 3jca 1128 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (ran 𝑃 = {(𝑃‘0), (𝑃‘1), (𝑃‘2)} ∧ (♯‘ran 𝑃) = 3 ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))) |
| 124 | 11, 19, 27, 42, 53, 67, 123 | 3rspcedvdw 3624 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ∃𝑥 ∈ (Vtx‘𝐺)∃𝑦 ∈ (Vtx‘𝐺)∃𝑧 ∈ (Vtx‘𝐺)(ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)))) |
| 125 | | eqid 2734 |
. . . . . . . . . . 11
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 126 | 29, 125 | isgrtri 47856 |
. . . . . . . . . 10
⊢ (ran
𝑃 ∈
(GrTriangles‘𝐺)
↔ ∃𝑥 ∈
(Vtx‘𝐺)∃𝑦 ∈ (Vtx‘𝐺)∃𝑧 ∈ (Vtx‘𝐺)(ran 𝑃 = {𝑥, 𝑦, 𝑧} ∧ (♯‘ran 𝑃) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐺) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐺) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐺)))) |
| 127 | 124, 126 | sylibr 234 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ran 𝑃 ∈ (GrTriangles‘𝐺)) |
| 128 | 127 | exp32 420 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((♯‘𝐹) = 3 → ran 𝑃 ∈ (GrTriangles‘𝐺)))) |
| 129 | 128 | com23 86 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹(Paths‘𝐺)𝑃) → ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ran 𝑃 ∈ (GrTriangles‘𝐺)))) |
| 130 | 129 | expcom 413 |
. . . . . 6
⊢ (𝐹(Paths‘𝐺)𝑃 → (𝜑 → ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ran 𝑃 ∈ (GrTriangles‘𝐺))))) |
| 131 | 130 | com24 95 |
. . . . 5
⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺))))) |
| 132 | 131 | imp 406 |
. . . 4
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺)))) |
| 133 | 3, 132 | syl 17 |
. . 3
⊢ (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 3 → (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺)))) |
| 134 | 133 | com13 88 |
. 2
⊢ (𝜑 → ((♯‘𝐹) = 3 → (𝐹(Cycles‘𝐺)𝑃 → ran 𝑃 ∈ (GrTriangles‘𝐺)))) |
| 135 | 1, 2, 134 | mp2d 49 |
1
⊢ (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺)) |