Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimfv Structured version   Visualization version   GIF version

Theorem fnlimfv 44840
Description: The value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimfv.1 𝑥𝐷
fnlimfv.2 𝑥𝐹
fnlimfv.3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimfv.4 (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimfv (𝜑 → (𝐺𝑋) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
Distinct variable groups:   𝑚,𝑋   𝑥,𝑍   𝑥,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚)   𝑋(𝑥)   𝑍(𝑚)

Proof of Theorem fnlimfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnlimfv.3 . . 3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
2 fnlimfv.1 . . . 4 𝑥𝐷
3 nfcv 2902 . . . 4 𝑦𝐷
4 nfcv 2902 . . . 4 𝑦( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
5 nfcv 2902 . . . . 5 𝑥
6 nfcv 2902 . . . . . 6 𝑥𝑍
7 fnlimfv.2 . . . . . . . 8 𝑥𝐹
8 nfcv 2902 . . . . . . . 8 𝑥𝑚
97, 8nffv 6901 . . . . . . 7 𝑥(𝐹𝑚)
10 nfcv 2902 . . . . . . 7 𝑥𝑦
119, 10nffv 6901 . . . . . 6 𝑥((𝐹𝑚)‘𝑦)
126, 11nfmpt 5255 . . . . 5 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
135, 12nffv 6901 . . . 4 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
14 fveq2 6891 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
1514mpteq2dv 5250 . . . . 5 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
1615fveq2d 6895 . . . 4 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
172, 3, 4, 13, 16cbvmptf 5257 . . 3 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
181, 17eqtri 2759 . 2 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
19 fveq2 6891 . . . 4 (𝑦 = 𝑋 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
2019mpteq2dv 5250 . . 3 (𝑦 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
2120fveq2d 6895 . 2 (𝑦 = 𝑋 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
22 fnlimfv.4 . 2 (𝜑𝑋𝐷)
23 fvexd 6906 . 2 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ V)
2418, 21, 22, 23fvmptd3 7021 1 (𝜑 → (𝐺𝑋) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wnfc 2882  Vcvv 3473  cmpt 5231  cfv 6543  cli 15435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551
This theorem is referenced by:  fnlimcnv  44844  smflimlem2  45949
  Copyright terms: Public domain W3C validator