![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimfv | Structured version Visualization version GIF version |
Description: The value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fnlimfv.1 | ⊢ Ⅎ𝑥𝐷 |
fnlimfv.2 | ⊢ Ⅎ𝑥𝐹 |
fnlimfv.3 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
fnlimfv.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
fnlimfv | ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnlimfv.3 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
2 | fnlimfv.1 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
3 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑦𝐷 | |
4 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑦( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) | |
5 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑥 ⇝ | |
6 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑥𝑍 | |
7 | fnlimfv.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
8 | nfcv 2902 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑚 | |
9 | 7, 8 | nffv 6901 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
10 | nfcv 2902 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
11 | 9, 10 | nffv 6901 | . . . . . 6 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑦) |
12 | 6, 11 | nfmpt 5255 | . . . . 5 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) |
13 | 5, 12 | nffv 6901 | . . . 4 ⊢ Ⅎ𝑥( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
14 | fveq2 6891 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) | |
15 | 14 | mpteq2dv 5250 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
16 | 15 | fveq2d 6895 | . . . 4 ⊢ (𝑥 = 𝑦 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
17 | 2, 3, 4, 13, 16 | cbvmptf 5257 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑦 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
18 | 1, 17 | eqtri 2759 | . 2 ⊢ 𝐺 = (𝑦 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
19 | fveq2 6891 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑚)‘𝑋)) | |
20 | 19 | mpteq2dv 5250 | . . 3 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
21 | 20 | fveq2d 6895 | . 2 ⊢ (𝑦 = 𝑋 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
22 | fnlimfv.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
23 | fvexd 6906 | . 2 ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V) | |
24 | 18, 21, 22, 23 | fvmptd3 7021 | 1 ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Ⅎwnfc 2882 Vcvv 3473 ↦ cmpt 5231 ‘cfv 6543 ⇝ cli 15435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 |
This theorem is referenced by: fnlimcnv 44844 smflimlem2 45949 |
Copyright terms: Public domain | W3C validator |