Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimfv | Structured version Visualization version GIF version |
Description: The value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fnlimfv.1 | ⊢ Ⅎ𝑥𝐷 |
fnlimfv.2 | ⊢ Ⅎ𝑥𝐹 |
fnlimfv.3 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
fnlimfv.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
fnlimfv | ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnlimfv.3 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
2 | fnlimfv.1 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
3 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑦𝐷 | |
4 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑦( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) | |
5 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥 ⇝ | |
6 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥𝑍 | |
7 | fnlimfv.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
8 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑚 | |
9 | 7, 8 | nffv 6784 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
10 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
11 | 9, 10 | nffv 6784 | . . . . . 6 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑦) |
12 | 6, 11 | nfmpt 5181 | . . . . 5 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) |
13 | 5, 12 | nffv 6784 | . . . 4 ⊢ Ⅎ𝑥( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
14 | fveq2 6774 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) | |
15 | 14 | mpteq2dv 5176 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
16 | 15 | fveq2d 6778 | . . . 4 ⊢ (𝑥 = 𝑦 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
17 | 2, 3, 4, 13, 16 | cbvmptf 5183 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑦 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
18 | 1, 17 | eqtri 2766 | . 2 ⊢ 𝐺 = (𝑦 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
19 | fveq2 6774 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑚)‘𝑋)) | |
20 | 19 | mpteq2dv 5176 | . . 3 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
21 | 20 | fveq2d 6778 | . 2 ⊢ (𝑦 = 𝑋 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
22 | fnlimfv.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
23 | fvexd 6789 | . 2 ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V) | |
24 | 18, 21, 22, 23 | fvmptd3 6898 | 1 ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 Vcvv 3432 ↦ cmpt 5157 ‘cfv 6433 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: fnlimcnv 43208 smflimlem2 44307 |
Copyright terms: Public domain | W3C validator |