Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimfv Structured version   Visualization version   GIF version

Theorem fnlimfv 44864
Description: The value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimfv.1 𝑥𝐷
fnlimfv.2 𝑥𝐹
fnlimfv.3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimfv.4 (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimfv (𝜑 → (𝐺𝑋) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
Distinct variable groups:   𝑚,𝑋   𝑥,𝑍   𝑥,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚)   𝑋(𝑥)   𝑍(𝑚)

Proof of Theorem fnlimfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnlimfv.3 . . 3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
2 fnlimfv.1 . . . 4 𝑥𝐷
3 nfcv 2895 . . . 4 𝑦𝐷
4 nfcv 2895 . . . 4 𝑦( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
5 nfcv 2895 . . . . 5 𝑥
6 nfcv 2895 . . . . . 6 𝑥𝑍
7 fnlimfv.2 . . . . . . . 8 𝑥𝐹
8 nfcv 2895 . . . . . . . 8 𝑥𝑚
97, 8nffv 6891 . . . . . . 7 𝑥(𝐹𝑚)
10 nfcv 2895 . . . . . . 7 𝑥𝑦
119, 10nffv 6891 . . . . . 6 𝑥((𝐹𝑚)‘𝑦)
126, 11nfmpt 5245 . . . . 5 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
135, 12nffv 6891 . . . 4 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
14 fveq2 6881 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
1514mpteq2dv 5240 . . . . 5 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
1615fveq2d 6885 . . . 4 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
172, 3, 4, 13, 16cbvmptf 5247 . . 3 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
181, 17eqtri 2752 . 2 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))))
19 fveq2 6881 . . . 4 (𝑦 = 𝑋 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
2019mpteq2dv 5240 . . 3 (𝑦 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
2120fveq2d 6885 . 2 (𝑦 = 𝑋 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
22 fnlimfv.4 . 2 (𝜑𝑋𝐷)
23 fvexd 6896 . 2 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ V)
2418, 21, 22, 23fvmptd3 7011 1 (𝜑 → (𝐺𝑋) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wnfc 2875  Vcvv 3466  cmpt 5221  cfv 6533  cli 15425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-iota 6485  df-fun 6535  df-fv 6541
This theorem is referenced by:  fnlimcnv  44868  smflimlem2  45973
  Copyright terms: Public domain W3C validator