Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimfv | Structured version Visualization version GIF version |
Description: The value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fnlimfv.1 | ⊢ Ⅎ𝑥𝐷 |
fnlimfv.2 | ⊢ Ⅎ𝑥𝐹 |
fnlimfv.3 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
fnlimfv.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
fnlimfv | ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnlimfv.3 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
2 | fnlimfv.1 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
3 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑦𝐷 | |
4 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑦( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) | |
5 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥 ⇝ | |
6 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑥𝑍 | |
7 | fnlimfv.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
8 | nfcv 2906 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑚 | |
9 | 7, 8 | nffv 6766 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
10 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
11 | 9, 10 | nffv 6766 | . . . . . 6 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑦) |
12 | 6, 11 | nfmpt 5177 | . . . . 5 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) |
13 | 5, 12 | nffv 6766 | . . . 4 ⊢ Ⅎ𝑥( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
14 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) | |
15 | 14 | mpteq2dv 5172 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
16 | 15 | fveq2d 6760 | . . . 4 ⊢ (𝑥 = 𝑦 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
17 | 2, 3, 4, 13, 16 | cbvmptf 5179 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑦 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
18 | 1, 17 | eqtri 2766 | . 2 ⊢ 𝐺 = (𝑦 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
19 | fveq2 6756 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑚)‘𝑋)) | |
20 | 19 | mpteq2dv 5172 | . . 3 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
21 | 20 | fveq2d 6760 | . 2 ⊢ (𝑦 = 𝑋 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
22 | fnlimfv.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
23 | fvexd 6771 | . 2 ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V) | |
24 | 18, 21, 22, 23 | fvmptd3 6880 | 1 ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 Vcvv 3422 ↦ cmpt 5153 ‘cfv 6418 ⇝ cli 15121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: fnlimcnv 43098 smflimlem2 44194 |
Copyright terms: Public domain | W3C validator |