| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimfv | Structured version Visualization version GIF version | ||
| Description: The value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fnlimfv.1 | ⊢ Ⅎ𝑥𝐷 |
| fnlimfv.2 | ⊢ Ⅎ𝑥𝐹 |
| fnlimfv.3 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
| fnlimfv.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| fnlimfv | ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnlimfv.3 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
| 2 | fnlimfv.1 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
| 3 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑦𝐷 | |
| 4 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑦( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) | |
| 5 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥 ⇝ | |
| 6 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥𝑍 | |
| 7 | fnlimfv.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 8 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑚 | |
| 9 | 7, 8 | nffv 6871 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
| 10 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 11 | 9, 10 | nffv 6871 | . . . . . 6 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑦) |
| 12 | 6, 11 | nfmpt 5208 | . . . . 5 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) |
| 13 | 5, 12 | nffv 6871 | . . . 4 ⊢ Ⅎ𝑥( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
| 14 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) | |
| 15 | 14 | mpteq2dv 5204 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
| 16 | 15 | fveq2d 6865 | . . . 4 ⊢ (𝑥 = 𝑦 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
| 17 | 2, 3, 4, 13, 16 | cbvmptf 5210 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑦 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
| 18 | 1, 17 | eqtri 2753 | . 2 ⊢ 𝐺 = (𝑦 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
| 19 | fveq2 6861 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑚)‘𝑋)) | |
| 20 | 19 | mpteq2dv 5204 | . . 3 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
| 21 | 20 | fveq2d 6865 | . 2 ⊢ (𝑦 = 𝑋 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 22 | fnlimfv.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 23 | fvexd 6876 | . 2 ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V) | |
| 24 | 18, 21, 22, 23 | fvmptd3 6994 | 1 ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2877 Vcvv 3450 ↦ cmpt 5191 ‘cfv 6514 ⇝ cli 15457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: fnlimcnv 45672 smflimlem2 46777 |
| Copyright terms: Public domain | W3C validator |