Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffnaov Structured version   Visualization version   GIF version

Theorem ffnaov 44691
Description: An operation maps to a class to which all values belong, analogous to ffnov 7401. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
ffnaov (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ffnaov
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ffnafv 44663 . 2 (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶))
2 afveq2 44627 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹'''𝑤) = (𝐹'''⟨𝑥, 𝑦⟩))
3 df-aov 44613 . . . . . 6 ((𝑥𝐹𝑦)) = (𝐹'''⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2796 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹'''𝑤) = ((𝑥𝐹𝑦)) )
54eleq1d 2823 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝐹'''𝑤) ∈ 𝐶 ↔ ((𝑥𝐹𝑦)) ∈ 𝐶))
65ralxp 5750 . . 3 (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)
76anbi2i 623 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
81, 7bitri 274 1 (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cop 4567   × cxp 5587   Fn wfn 6428  wf 6429  '''cafv 44609   ((caov 44610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-aiota 44577  df-dfat 44611  df-afv 44612  df-aov 44613
This theorem is referenced by:  faovcl  44692
  Copyright terms: Public domain W3C validator