Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffnaov Structured version   Visualization version   GIF version

Theorem ffnaov 47208
Description: An operation maps to a class to which all values belong, analogous to ffnov 7538. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
ffnaov (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ffnaov
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ffnafv 47180 . 2 (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶))
2 afveq2 47144 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹'''𝑤) = (𝐹'''⟨𝑥, 𝑦⟩))
3 df-aov 47130 . . . . . 6 ((𝑥𝐹𝑦)) = (𝐹'''⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2789 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹'''𝑤) = ((𝑥𝐹𝑦)) )
54eleq1d 2820 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝐹'''𝑤) ∈ 𝐶 ↔ ((𝑥𝐹𝑦)) ∈ 𝐶))
65ralxp 5826 . . 3 (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)
76anbi2i 623 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
81, 7bitri 275 1 (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  cop 4612   × cxp 5657   Fn wfn 6531  wf 6532  '''cafv 47126   ((caov 47127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-aiota 47094  df-dfat 47128  df-afv 47129  df-aov 47130
This theorem is referenced by:  faovcl  47209
  Copyright terms: Public domain W3C validator