| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ffnaov | Structured version Visualization version GIF version | ||
| Description: An operation maps to a class to which all values belong, analogous to ffnov 7481. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| ffnaov | ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnafv 47333 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶)) | |
| 2 | afveq2 47297 | . . . . . 6 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹'''𝑤) = (𝐹'''〈𝑥, 𝑦〉)) | |
| 3 | df-aov 47283 | . . . . . 6 ⊢ ((𝑥𝐹𝑦)) = (𝐹'''〈𝑥, 𝑦〉) | |
| 4 | 2, 3 | eqtr4di 2786 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹'''𝑤) = ((𝑥𝐹𝑦)) ) |
| 5 | 4 | eleq1d 2818 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((𝐹'''𝑤) ∈ 𝐶 ↔ ((𝑥𝐹𝑦)) ∈ 𝐶)) |
| 6 | 5 | ralxp 5787 | . . 3 ⊢ (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶) |
| 7 | 6 | anbi2i 623 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) |
| 8 | 1, 7 | bitri 275 | 1 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 〈cop 4583 × cxp 5619 Fn wfn 6484 ⟶wf 6485 '''cafv 47279 ((caov 47280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-aiota 47247 df-dfat 47281 df-afv 47282 df-aov 47283 |
| This theorem is referenced by: faovcl 47362 |
| Copyright terms: Public domain | W3C validator |