![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ffnaov | Structured version Visualization version GIF version |
Description: An operation maps to a class to which all values belong, analogous to ffnov 7527. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
ffnaov | ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnafv 46330 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶)) | |
2 | afveq2 46294 | . . . . . 6 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹'''𝑤) = (𝐹'''〈𝑥, 𝑦〉)) | |
3 | df-aov 46280 | . . . . . 6 ⊢ ((𝑥𝐹𝑦)) = (𝐹'''〈𝑥, 𝑦〉) | |
4 | 2, 3 | eqtr4di 2782 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹'''𝑤) = ((𝑥𝐹𝑦)) ) |
5 | 4 | eleq1d 2810 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((𝐹'''𝑤) ∈ 𝐶 ↔ ((𝑥𝐹𝑦)) ∈ 𝐶)) |
6 | 5 | ralxp 5831 | . . 3 ⊢ (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶) |
7 | 6 | anbi2i 622 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) |
8 | 1, 7 | bitri 275 | 1 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 〈cop 4626 × cxp 5664 Fn wfn 6528 ⟶wf 6529 '''cafv 46276 ((caov 46277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-aiota 46244 df-dfat 46278 df-afv 46279 df-aov 46280 |
This theorem is referenced by: faovcl 46359 |
Copyright terms: Public domain | W3C validator |