| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ffnaov | Structured version Visualization version GIF version | ||
| Description: An operation maps to a class to which all values belong, analogous to ffnov 7467. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| ffnaov | ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnafv 47202 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶)) | |
| 2 | afveq2 47166 | . . . . . 6 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹'''𝑤) = (𝐹'''〈𝑥, 𝑦〉)) | |
| 3 | df-aov 47152 | . . . . . 6 ⊢ ((𝑥𝐹𝑦)) = (𝐹'''〈𝑥, 𝑦〉) | |
| 4 | 2, 3 | eqtr4di 2784 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹'''𝑤) = ((𝑥𝐹𝑦)) ) |
| 5 | 4 | eleq1d 2816 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((𝐹'''𝑤) ∈ 𝐶 ↔ ((𝑥𝐹𝑦)) ∈ 𝐶)) |
| 6 | 5 | ralxp 5776 | . . 3 ⊢ (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶) |
| 7 | 6 | anbi2i 623 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) |
| 8 | 1, 7 | bitri 275 | 1 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 〈cop 4577 × cxp 5609 Fn wfn 6471 ⟶wf 6472 '''cafv 47148 ((caov 47149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-aiota 47116 df-dfat 47150 df-afv 47151 df-aov 47152 |
| This theorem is referenced by: faovcl 47231 |
| Copyright terms: Public domain | W3C validator |