Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffnaov Structured version   Visualization version   GIF version

Theorem ffnaov 47149
Description: An operation maps to a class to which all values belong, analogous to ffnov 7559. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
ffnaov (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ffnaov
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ffnafv 47121 . 2 (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶))
2 afveq2 47085 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹'''𝑤) = (𝐹'''⟨𝑥, 𝑦⟩))
3 df-aov 47071 . . . . . 6 ((𝑥𝐹𝑦)) = (𝐹'''⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2793 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹'''𝑤) = ((𝑥𝐹𝑦)) )
54eleq1d 2824 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝐹'''𝑤) ∈ 𝐶 ↔ ((𝑥𝐹𝑦)) ∈ 𝐶))
65ralxp 5855 . . 3 (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)
76anbi2i 623 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
81, 7bitri 275 1 (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  cop 4637   × cxp 5687   Fn wfn 6558  wf 6559  '''cafv 47067   ((caov 47068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-aiota 47035  df-dfat 47069  df-afv 47070  df-aov 47071
This theorem is referenced by:  faovcl  47150
  Copyright terms: Public domain W3C validator