MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnr Structured version   Visualization version   GIF version

Theorem fnsnr 7185
Description: If a class belongs to a function on a singleton, then that class is the obvious ordered pair. Note that this theorem also holds when 𝐴 is a proper class, but its meaning is then different. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.)
Assertion
Ref Expression
fnsnr (𝐹 Fn {𝐴} → (𝐵𝐹𝐵 = ⟨𝐴, (𝐹𝐴)⟩))

Proof of Theorem fnsnr
StepHypRef Expression
1 fnresdm 6688 . . . 4 (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) = 𝐹)
2 fnfun 6669 . . . . 5 (𝐹 Fn {𝐴} → Fun 𝐹)
3 funressn 7179 . . . . 5 (Fun 𝐹 → (𝐹 ↾ {𝐴}) ⊆ {⟨𝐴, (𝐹𝐴)⟩})
42, 3syl 17 . . . 4 (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) ⊆ {⟨𝐴, (𝐹𝐴)⟩})
51, 4eqsstrrd 4035 . . 3 (𝐹 Fn {𝐴} → 𝐹 ⊆ {⟨𝐴, (𝐹𝐴)⟩})
65sseld 3994 . 2 (𝐹 Fn {𝐴} → (𝐵𝐹𝐵 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
7 elsni 4648 . 2 (𝐵 ∈ {⟨𝐴, (𝐹𝐴)⟩} → 𝐵 = ⟨𝐴, (𝐹𝐴)⟩)
86, 7syl6 35 1 (𝐹 Fn {𝐴} → (𝐵𝐹𝐵 = ⟨𝐴, (𝐹𝐴)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963  {csn 4631  cop 4637  cres 5691  Fun wfun 6557   Fn wfn 6558  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571
This theorem is referenced by:  fnsnb  7186  fnsnbt  42250
  Copyright terms: Public domain W3C validator