![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsnr | Structured version Visualization version GIF version |
Description: If a class belongs to a function on a singleton, then that class is the obvious ordered pair. Note that this theorem also holds when 𝐴 is a proper class, but its meaning is then different. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) |
Ref | Expression |
---|---|
fnsnr | ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = 〈𝐴, (𝐹‘𝐴)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6680 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) = 𝐹) | |
2 | fnfun 6660 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → Fun 𝐹) | |
3 | funressn 7173 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐴}) ⊆ {〈𝐴, (𝐹‘𝐴)〉}) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) ⊆ {〈𝐴, (𝐹‘𝐴)〉}) |
5 | 1, 4 | eqsstrrd 4019 | . . 3 ⊢ (𝐹 Fn {𝐴} → 𝐹 ⊆ {〈𝐴, (𝐹‘𝐴)〉}) |
6 | 5 | sseld 3978 | . 2 ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 ∈ {〈𝐴, (𝐹‘𝐴)〉})) |
7 | elsni 4650 | . 2 ⊢ (𝐵 ∈ {〈𝐴, (𝐹‘𝐴)〉} → 𝐵 = 〈𝐴, (𝐹‘𝐴)〉) | |
8 | 6, 7 | syl6 35 | 1 ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = 〈𝐴, (𝐹‘𝐴)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 {csn 4633 〈cop 4639 ↾ cres 5684 Fun wfun 6548 Fn wfn 6549 ‘cfv 6554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 |
This theorem is referenced by: fnsnb 7180 fnsnbt 41954 |
Copyright terms: Public domain | W3C validator |