![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsnr | Structured version Visualization version GIF version |
Description: If a class belongs to a function on a singleton, then that class is the obvious ordered pair. Note that this theorem also holds when 𝐴 is a proper class, but its meaning is then different. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) |
Ref | Expression |
---|---|
fnsnr | ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = ⟨𝐴, (𝐹‘𝐴)⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6621 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) = 𝐹) | |
2 | fnfun 6603 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → Fun 𝐹) | |
3 | funressn 7106 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐴}) ⊆ {⟨𝐴, (𝐹‘𝐴)⟩}) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) ⊆ {⟨𝐴, (𝐹‘𝐴)⟩}) |
5 | 1, 4 | eqsstrrd 3984 | . . 3 ⊢ (𝐹 Fn {𝐴} → 𝐹 ⊆ {⟨𝐴, (𝐹‘𝐴)⟩}) |
6 | 5 | sseld 3944 | . 2 ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 ∈ {⟨𝐴, (𝐹‘𝐴)⟩})) |
7 | elsni 4604 | . 2 ⊢ (𝐵 ∈ {⟨𝐴, (𝐹‘𝐴)⟩} → 𝐵 = ⟨𝐴, (𝐹‘𝐴)⟩) | |
8 | 6, 7 | syl6 35 | 1 ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = ⟨𝐴, (𝐹‘𝐴)⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⊆ wss 3911 {csn 4587 ⟨cop 4593 ↾ cres 5636 Fun wfun 6491 Fn wfn 6492 ‘cfv 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 |
This theorem is referenced by: fnsnb 7113 fnsnbt 40660 |
Copyright terms: Public domain | W3C validator |