MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnr Structured version   Visualization version   GIF version

Theorem fnsnr 7034
Description: If a class belongs to a function on a singleton, then that class is the obvious ordered pair. Note that this theorem also holds when 𝐴 is a proper class, but its meaning is then different. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.)
Assertion
Ref Expression
fnsnr (𝐹 Fn {𝐴} → (𝐵𝐹𝐵 = ⟨𝐴, (𝐹𝐴)⟩))

Proof of Theorem fnsnr
StepHypRef Expression
1 fnresdm 6549 . . . 4 (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) = 𝐹)
2 fnfun 6531 . . . . 5 (𝐹 Fn {𝐴} → Fun 𝐹)
3 funressn 7028 . . . . 5 (Fun 𝐹 → (𝐹 ↾ {𝐴}) ⊆ {⟨𝐴, (𝐹𝐴)⟩})
42, 3syl 17 . . . 4 (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) ⊆ {⟨𝐴, (𝐹𝐴)⟩})
51, 4eqsstrrd 3965 . . 3 (𝐹 Fn {𝐴} → 𝐹 ⊆ {⟨𝐴, (𝐹𝐴)⟩})
65sseld 3925 . 2 (𝐹 Fn {𝐴} → (𝐵𝐹𝐵 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
7 elsni 4584 . 2 (𝐵 ∈ {⟨𝐴, (𝐹𝐴)⟩} → 𝐵 = ⟨𝐴, (𝐹𝐴)⟩)
86, 7syl6 35 1 (𝐹 Fn {𝐴} → (𝐵𝐹𝐵 = ⟨𝐴, (𝐹𝐴)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  wss 3892  {csn 4567  cop 4573  cres 5592  Fun wfun 6426   Fn wfn 6427  cfv 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440
This theorem is referenced by:  fnsnb  7035  fnsnbt  40205
  Copyright terms: Public domain W3C validator