![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsnr | Structured version Visualization version GIF version |
Description: If a class belongs to a function on a singleton, then that class is the obvious ordered pair. Note that this theorem also holds when 𝐴 is a proper class, but its meaning is then different. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) |
Ref | Expression |
---|---|
fnsnr | ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = ⟨𝐴, (𝐹‘𝐴)⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6674 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) = 𝐹) | |
2 | fnfun 6654 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → Fun 𝐹) | |
3 | funressn 7168 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐴}) ⊆ {⟨𝐴, (𝐹‘𝐴)⟩}) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) ⊆ {⟨𝐴, (𝐹‘𝐴)⟩}) |
5 | 1, 4 | eqsstrrd 4019 | . . 3 ⊢ (𝐹 Fn {𝐴} → 𝐹 ⊆ {⟨𝐴, (𝐹‘𝐴)⟩}) |
6 | 5 | sseld 3979 | . 2 ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 ∈ {⟨𝐴, (𝐹‘𝐴)⟩})) |
7 | elsni 4646 | . 2 ⊢ (𝐵 ∈ {⟨𝐴, (𝐹‘𝐴)⟩} → 𝐵 = ⟨𝐴, (𝐹‘𝐴)⟩) | |
8 | 6, 7 | syl6 35 | 1 ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = ⟨𝐴, (𝐹‘𝐴)⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 {csn 4629 ⟨cop 4635 ↾ cres 5680 Fun wfun 6542 Fn wfn 6543 ‘cfv 6548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 |
This theorem is referenced by: fnsnb 7175 fnsnbt 41721 |
Copyright terms: Public domain | W3C validator |