Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnsnr | Structured version Visualization version GIF version |
Description: If a class belongs to a function on a singleton, then that class is the obvious ordered pair. Note that this theorem also holds when 𝐴 is a proper class, but its meaning is then different. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) |
Ref | Expression |
---|---|
fnsnr | ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = 〈𝐴, (𝐹‘𝐴)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6549 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) = 𝐹) | |
2 | fnfun 6531 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → Fun 𝐹) | |
3 | funressn 7028 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐴}) ⊆ {〈𝐴, (𝐹‘𝐴)〉}) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) ⊆ {〈𝐴, (𝐹‘𝐴)〉}) |
5 | 1, 4 | eqsstrrd 3965 | . . 3 ⊢ (𝐹 Fn {𝐴} → 𝐹 ⊆ {〈𝐴, (𝐹‘𝐴)〉}) |
6 | 5 | sseld 3925 | . 2 ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 ∈ {〈𝐴, (𝐹‘𝐴)〉})) |
7 | elsni 4584 | . 2 ⊢ (𝐵 ∈ {〈𝐴, (𝐹‘𝐴)〉} → 𝐵 = 〈𝐴, (𝐹‘𝐴)〉) | |
8 | 6, 7 | syl6 35 | 1 ⊢ (𝐹 Fn {𝐴} → (𝐵 ∈ 𝐹 → 𝐵 = 〈𝐴, (𝐹‘𝐴)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 {csn 4567 〈cop 4573 ↾ cres 5592 Fun wfun 6426 Fn wfn 6427 ‘cfv 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 |
This theorem is referenced by: fnsnb 7035 fnsnbt 40205 |
Copyright terms: Public domain | W3C validator |