MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnr Structured version   Visualization version   GIF version

Theorem fnsnr 7140
Description: If a class belongs to a function on a singleton, then that class is the obvious ordered pair. Note that this theorem also holds when 𝐴 is a proper class, but its meaning is then different. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.)
Assertion
Ref Expression
fnsnr (𝐹 Fn {𝐴} → (𝐵𝐹𝐵 = ⟨𝐴, (𝐹𝐴)⟩))

Proof of Theorem fnsnr
StepHypRef Expression
1 fnresdm 6640 . . . 4 (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) = 𝐹)
2 fnfun 6621 . . . . 5 (𝐹 Fn {𝐴} → Fun 𝐹)
3 funressn 7134 . . . . 5 (Fun 𝐹 → (𝐹 ↾ {𝐴}) ⊆ {⟨𝐴, (𝐹𝐴)⟩})
42, 3syl 17 . . . 4 (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) ⊆ {⟨𝐴, (𝐹𝐴)⟩})
51, 4eqsstrrd 3985 . . 3 (𝐹 Fn {𝐴} → 𝐹 ⊆ {⟨𝐴, (𝐹𝐴)⟩})
65sseld 3948 . 2 (𝐹 Fn {𝐴} → (𝐵𝐹𝐵 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
7 elsni 4609 . 2 (𝐵 ∈ {⟨𝐴, (𝐹𝐴)⟩} → 𝐵 = ⟨𝐴, (𝐹𝐴)⟩)
86, 7syl6 35 1 (𝐹 Fn {𝐴} → (𝐵𝐹𝐵 = ⟨𝐴, (𝐹𝐴)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917  {csn 4592  cop 4598  cres 5643  Fun wfun 6508   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by:  fnsnbg  7141  fnsnbOLD  7143
  Copyright terms: Public domain W3C validator