MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvconst Structured version   Visualization version   GIF version

Theorem fvconst 7136
Description: The value of a constant function. (Contributed by NM, 30-May-1999.)
Assertion
Ref Expression
fvconst ((𝐹:𝐴⟶{𝐵} ∧ 𝐶𝐴) → (𝐹𝐶) = 𝐵)

Proof of Theorem fvconst
StepHypRef Expression
1 ffvelcdm 7053 . 2 ((𝐹:𝐴⟶{𝐵} ∧ 𝐶𝐴) → (𝐹𝐶) ∈ {𝐵})
2 elsni 4606 . 2 ((𝐹𝐶) ∈ {𝐵} → (𝐹𝐶) = 𝐵)
31, 2syl 17 1 ((𝐹:𝐴⟶{𝐵} ∧ 𝐶𝐴) → (𝐹𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4589  wf 6507  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by:  fvconst2g  7176  fconst2g  7177  f1cdmsn  7257  nf1const  7279  zrtermorngc  20552  zrtermoringc  20584  ipasslem9  30767  resf1o  32653  elrgspnlem1  33193  ccatmulgnn0dir  34533  prv1n  35418  sticksstones11  42144
  Copyright terms: Public domain W3C validator