MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvconst Structured version   Visualization version   GIF version

Theorem fvconst 7096
Description: The value of a constant function. (Contributed by NM, 30-May-1999.)
Assertion
Ref Expression
fvconst ((𝐹:𝐴⟶{𝐵} ∧ 𝐶𝐴) → (𝐹𝐶) = 𝐵)

Proof of Theorem fvconst
StepHypRef Expression
1 ffvelcdm 7014 . 2 ((𝐹:𝐴⟶{𝐵} ∧ 𝐶𝐴) → (𝐹𝐶) ∈ {𝐵})
2 elsni 4593 . 2 ((𝐹𝐶) ∈ {𝐵} → (𝐹𝐶) = 𝐵)
31, 2syl 17 1 ((𝐹:𝐴⟶{𝐵} ∧ 𝐶𝐴) → (𝐹𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4576  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by:  fvconst2g  7136  fconst2g  7137  f1cdmsn  7216  nf1const  7238  zrtermorngc  20556  zrtermoringc  20588  ipasslem9  30813  resf1o  32708  elrgspnlem1  33204  ccatmulgnn0dir  34550  prv1n  35463  sticksstones11  42188
  Copyright terms: Public domain W3C validator