Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuzxrpmcn Structured version   Visualization version   GIF version

Theorem fuzxrpmcn 40572
Description: A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fuzxrpmcn.1 𝑍 = (ℤ𝑀)
fuzxrpmcn.2 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
fuzxrpmcn (𝜑𝐹 ∈ (ℝ*pm ℂ))

Proof of Theorem fuzxrpmcn
StepHypRef Expression
1 cnex 10219 . . 3 ℂ ∈ V
21a1i 11 . 2 (𝜑 → ℂ ∈ V)
3 xrex 12032 . . 3 * ∈ V
43a1i 11 . 2 (𝜑 → ℝ* ∈ V)
5 fuzxrpmcn.1 . . . 4 𝑍 = (ℤ𝑀)
65uzsscn2 40224 . . 3 𝑍 ⊆ ℂ
76a1i 11 . 2 (𝜑𝑍 ⊆ ℂ)
8 fuzxrpmcn.2 . 2 (𝜑𝐹:𝑍⟶ℝ*)
92, 4, 7, 8fpmd 40001 1 (𝜑𝐹 ∈ (ℝ*pm ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  Vcvv 3351  wss 3723  wf 6027  cfv 6031  (class class class)co 6793  pm cpm 8010  cc 10136  *cxr 10275  cuz 11888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-pm 8012  df-xr 10280  df-neg 10471  df-z 11580  df-uz 11889
This theorem is referenced by:  xlimconst2  40579  xlimclim2lem  40583  climxlim2  40590
  Copyright terms: Public domain W3C validator