Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fuzxrpmcn | Structured version Visualization version GIF version |
Description: A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
fuzxrpmcn.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
fuzxrpmcn.2 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
Ref | Expression |
---|---|
fuzxrpmcn | ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10936 | . . 3 ⊢ ℂ ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℂ ∈ V) |
3 | xrex 12709 | . . 3 ⊢ ℝ* ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ℝ* ∈ V) |
5 | fuzxrpmcn.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | 5 | uzsscn2 42972 | . . 3 ⊢ 𝑍 ⊆ ℂ |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → 𝑍 ⊆ ℂ) |
8 | fuzxrpmcn.2 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
9 | 2, 4, 7, 8 | fpmd 42764 | 1 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ↑pm cpm 8590 ℂcc 10853 ℝ*cxr 10992 ℤ≥cuz 12564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-pm 8592 df-xr 10997 df-neg 11191 df-z 12303 df-uz 12565 |
This theorem is referenced by: xlimconst2 43330 xlimclim2lem 43334 climxlim2 43341 xlimliminflimsup 43357 |
Copyright terms: Public domain | W3C validator |