| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuzxrpmcn | Structured version Visualization version GIF version | ||
| Description: A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| fuzxrpmcn.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| fuzxrpmcn.2 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| Ref | Expression |
|---|---|
| fuzxrpmcn | ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11084 | . . 3 ⊢ ℂ ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℂ ∈ V) |
| 3 | xrex 12882 | . . 3 ⊢ ℝ* ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ℝ* ∈ V) |
| 5 | fuzxrpmcn.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | 5 | uzsscn2 45514 | . . 3 ⊢ 𝑍 ⊆ ℂ |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → 𝑍 ⊆ ℂ) |
| 8 | fuzxrpmcn.2 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 9 | 2, 4, 7, 8 | fpmd 45299 | 1 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑pm cpm 8751 ℂcc 11001 ℝ*cxr 11142 ℤ≥cuz 12729 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-pm 8753 df-xr 11147 df-neg 11344 df-z 12466 df-uz 12730 |
| This theorem is referenced by: xlimconst2 45872 xlimclim2lem 45876 climxlim2 45883 xlimliminflimsup 45899 |
| Copyright terms: Public domain | W3C validator |