| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuzxrpmcn | Structured version Visualization version GIF version | ||
| Description: A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| fuzxrpmcn.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| fuzxrpmcn.2 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| Ref | Expression |
|---|---|
| fuzxrpmcn | ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11167 | . . 3 ⊢ ℂ ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℂ ∈ V) |
| 3 | xrex 12960 | . . 3 ⊢ ℝ* ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ℝ* ∈ V) |
| 5 | fuzxrpmcn.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | 5 | uzsscn2 45446 | . . 3 ⊢ 𝑍 ⊆ ℂ |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → 𝑍 ⊆ ℂ) |
| 8 | fuzxrpmcn.2 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 9 | 2, 4, 7, 8 | fpmd 45229 | 1 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ⊆ wss 3922 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 ↑pm cpm 8804 ℂcc 11084 ℝ*cxr 11225 ℤ≥cuz 12809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-pm 8806 df-xr 11230 df-neg 11426 df-z 12546 df-uz 12810 |
| This theorem is referenced by: xlimconst2 45806 xlimclim2lem 45810 climxlim2 45817 xlimliminflimsup 45833 |
| Copyright terms: Public domain | W3C validator |