| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuzxrpmcn | Structured version Visualization version GIF version | ||
| Description: A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| fuzxrpmcn.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| fuzxrpmcn.2 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| Ref | Expression |
|---|---|
| fuzxrpmcn | ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11217 | . . 3 ⊢ ℂ ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℂ ∈ V) |
| 3 | xrex 13010 | . . 3 ⊢ ℝ* ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ℝ* ∈ V) |
| 5 | fuzxrpmcn.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | 5 | uzsscn2 45421 | . . 3 ⊢ 𝑍 ⊆ ℂ |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → 𝑍 ⊆ ℂ) |
| 8 | fuzxrpmcn.2 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 9 | 2, 4, 7, 8 | fpmd 45203 | 1 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 ↑pm cpm 8848 ℂcc 11134 ℝ*cxr 11275 ℤ≥cuz 12859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-pm 8850 df-xr 11280 df-neg 11476 df-z 12596 df-uz 12860 |
| This theorem is referenced by: xlimconst2 45783 xlimclim2lem 45787 climxlim2 45794 xlimliminflimsup 45810 |
| Copyright terms: Public domain | W3C validator |