Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuzxrpmcn Structured version   Visualization version   GIF version

Theorem fuzxrpmcn 40850
Description: A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fuzxrpmcn.1 𝑍 = (ℤ𝑀)
fuzxrpmcn.2 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
fuzxrpmcn (𝜑𝐹 ∈ (ℝ*pm ℂ))

Proof of Theorem fuzxrpmcn
StepHypRef Expression
1 cnex 10334 . . 3 ℂ ∈ V
21a1i 11 . 2 (𝜑 → ℂ ∈ V)
3 xrex 12110 . . 3 * ∈ V
43a1i 11 . 2 (𝜑 → ℝ* ∈ V)
5 fuzxrpmcn.1 . . . 4 𝑍 = (ℤ𝑀)
65uzsscn2 40503 . . 3 𝑍 ⊆ ℂ
76a1i 11 . 2 (𝜑𝑍 ⊆ ℂ)
8 fuzxrpmcn.2 . 2 (𝜑𝐹:𝑍⟶ℝ*)
92, 4, 7, 8fpmd 40284 1 (𝜑𝐹 ∈ (ℝ*pm ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  Vcvv 3415  wss 3799  wf 6120  cfv 6124  (class class class)co 6906  pm cpm 8124  cc 10251  *cxr 10391  cuz 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-fv 6132  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-pm 8126  df-xr 10396  df-neg 10589  df-z 11706  df-uz 11970
This theorem is referenced by:  xlimconst2  40857  xlimclim2lem  40861  climxlim2  40868
  Copyright terms: Public domain W3C validator