Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuzxrpmcn Structured version   Visualization version   GIF version

Theorem fuzxrpmcn 43044
Description: A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fuzxrpmcn.1 𝑍 = (ℤ𝑀)
fuzxrpmcn.2 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
fuzxrpmcn (𝜑𝐹 ∈ (ℝ*pm ℂ))

Proof of Theorem fuzxrpmcn
StepHypRef Expression
1 cnex 10810 . . 3 ℂ ∈ V
21a1i 11 . 2 (𝜑 → ℂ ∈ V)
3 xrex 12583 . . 3 * ∈ V
43a1i 11 . 2 (𝜑 → ℝ* ∈ V)
5 fuzxrpmcn.1 . . . 4 𝑍 = (ℤ𝑀)
65uzsscn2 42693 . . 3 𝑍 ⊆ ℂ
76a1i 11 . 2 (𝜑𝑍 ⊆ ℂ)
8 fuzxrpmcn.2 . 2 (𝜑𝐹:𝑍⟶ℝ*)
92, 4, 7, 8fpmd 42483 1 (𝜑𝐹 ∈ (ℝ*pm ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  Vcvv 3408  wss 3866  wf 6376  cfv 6380  (class class class)co 7213  pm cpm 8509  cc 10727  *cxr 10866  cuz 12438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-pm 8511  df-xr 10871  df-neg 11065  df-z 12177  df-uz 12439
This theorem is referenced by:  xlimconst2  43051  xlimclim2lem  43055  climxlim2  43062  xlimliminflimsup  43078
  Copyright terms: Public domain W3C validator