![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fuzxrpmcn | Structured version Visualization version GIF version |
Description: A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
fuzxrpmcn.1 | β’ π = (β€β₯βπ) |
fuzxrpmcn.2 | β’ (π β πΉ:πβΆβ*) |
Ref | Expression |
---|---|
fuzxrpmcn | β’ (π β πΉ β (β* βpm β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11191 | . . 3 β’ β β V | |
2 | 1 | a1i 11 | . 2 β’ (π β β β V) |
3 | xrex 12971 | . . 3 β’ β* β V | |
4 | 3 | a1i 11 | . 2 β’ (π β β* β V) |
5 | fuzxrpmcn.1 | . . . 4 β’ π = (β€β₯βπ) | |
6 | 5 | uzsscn2 44188 | . . 3 β’ π β β |
7 | 6 | a1i 11 | . 2 β’ (π β π β β) |
8 | fuzxrpmcn.2 | . 2 β’ (π β πΉ:πβΆβ*) | |
9 | 2, 4, 7, 8 | fpmd 43968 | 1 β’ (π β πΉ β (β* βpm β)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 Vcvv 3475 β wss 3949 βΆwf 6540 βcfv 6544 (class class class)co 7409 βpm cpm 8821 βcc 11108 β*cxr 11247 β€β₯cuz 12822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-pm 8823 df-xr 11252 df-neg 11447 df-z 12559 df-uz 12823 |
This theorem is referenced by: xlimconst2 44551 xlimclim2lem 44555 climxlim2 44562 xlimliminflimsup 44578 |
Copyright terms: Public domain | W3C validator |