| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveqeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fveqeq2d | ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
| 3 | 2 | eqeq1d 2731 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 |
| This theorem is referenced by: fveqeq2 6831 op1stg 7936 op2ndg 7937 ttrclss 9616 ttrclselem2 9622 fpwwecbv 10538 fpwwelem 10539 fseq1m1p1 13502 ico01fl0 13723 divfl0 13728 hashssdif 14319 cshw1 14728 smumullem 16403 algcvga 16490 vdwlem6 16898 vdwlem8 16900 ramub1lem1 16938 resmgmhm 18585 resmhm 18694 isghmOLD 19095 fislw 19504 pgpfaclem2 19963 0ringdif 20412 abvfval 20695 abvpropd 20720 lspsneq0 20915 reslmhm 20956 lspsneq 21029 mdetunilem7 22503 imasdsf1olem 24259 bcth 25227 ovoliunnul 25406 lognegb 26497 vmaval 27021 2lgslem3c 27307 2lgslem3d 27308 rusgrnumwrdl2 29532 wlkiswwlks2 29820 rusgrnumwwlks 29919 clwlkclwwlklem1 29943 clwlkclwwlklem2 29944 numclwwlk1 30305 wlkl0 30311 numclwlk1lem1 30313 isnvlem 30554 lnoval 30696 normsub0 31080 elunop2 31957 ishst 32158 hstri 32209 aciunf1lem 32606 lmatfval 33787 lmatcl 33789 voliune 34202 volfiniune 34203 snmlval 35314 voliunnfl 37654 sdclem1 37733 islshp 38968 lshpnel2N 38974 lshpset2N 39108 dicffval 41163 dicfval 41164 mapdhval 41713 hdmap1fval 41785 hdmap1vallem 41786 hdmap1val 41787 aks6d1c6isolem1 42157 aks6d1c6lem5 42160 diophin 42755 eldioph4b 42794 eldioph4i 42795 diophren 42796 fperiodmullem 45295 fargshiftfva 47437 paireqne 47505 grimidvtxedg 47879 grimcnv 47882 grimco 47883 isuspgrim0 47888 uhgrimisgrgriclem 47924 clnbgrgrimlem 47927 |
| Copyright terms: Public domain | W3C validator |