| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveqeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fveqeq2d | ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | fveq2d 6880 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
| 3 | 2 | eqeq1d 2737 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 |
| This theorem is referenced by: fveqeq2 6885 op1stg 8000 op2ndg 8001 ttrclss 9734 ttrclselem2 9740 fpwwecbv 10658 fpwwelem 10659 fseq1m1p1 13616 ico01fl0 13836 divfl0 13841 hashssdif 14430 cshw1 14840 smumullem 16511 algcvga 16598 vdwlem6 17006 vdwlem8 17008 ramub1lem1 17046 resmgmhm 18689 resmhm 18798 isghmOLD 19199 fislw 19606 pgpfaclem2 20065 0ringdif 20487 abvfval 20770 abvpropd 20795 lspsneq0 20969 reslmhm 21010 lspsneq 21083 mdetunilem7 22556 imasdsf1olem 24312 bcth 25281 ovoliunnul 25460 lognegb 26551 vmaval 27075 2lgslem3c 27361 2lgslem3d 27362 rusgrnumwrdl2 29566 wlkiswwlks2 29857 rusgrnumwwlks 29956 clwlkclwwlklem1 29980 clwlkclwwlklem2 29981 numclwwlk1 30342 wlkl0 30348 numclwlk1lem1 30350 isnvlem 30591 lnoval 30733 normsub0 31117 elunop2 31994 ishst 32195 hstri 32246 aciunf1lem 32640 lmatfval 33845 lmatcl 33847 voliune 34260 volfiniune 34261 snmlval 35353 voliunnfl 37688 sdclem1 37767 islshp 38997 lshpnel2N 39003 lshpset2N 39137 dicffval 41193 dicfval 41194 mapdhval 41743 hdmap1fval 41815 hdmap1vallem 41816 hdmap1val 41817 aks6d1c6isolem1 42187 aks6d1c6lem5 42190 diophin 42795 eldioph4b 42834 eldioph4i 42835 diophren 42836 fperiodmullem 45332 fargshiftfva 47457 paireqne 47525 grimidvtxedg 47898 grimcnv 47901 grimco 47902 isuspgrim0 47907 uhgrimisgrgriclem 47943 clnbgrgrimlem 47946 |
| Copyright terms: Public domain | W3C validator |