Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveqeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
Ref | Expression |
---|---|
fveqeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fveqeq2d | ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | fveq2d 6760 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
3 | 2 | eqeq1d 2740 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 |
This theorem is referenced by: fveqeq2 6765 op1stg 7816 op2ndg 7817 fpwwecbv 10331 fpwwelem 10332 fseq1m1p1 13260 ico01fl0 13467 divfl0 13472 hashssdif 14055 cshw1 14463 smumullem 16127 algcvga 16212 vdwlem6 16615 vdwlem8 16617 ramub1lem1 16655 resmhm 18374 isghm 18749 fislw 19145 pgpfaclem2 19600 abvfval 19993 abvpropd 20017 lspsneq0 20189 reslmhm 20229 lspsneq 20299 mdetunilem7 21675 imasdsf1olem 23434 bcth 24398 ovoliunnul 24576 lognegb 25650 vmaval 26167 2lgslem3c 26451 2lgslem3d 26452 rusgrnumwrdl2 27856 wlkiswwlks2 28141 rusgrnumwwlks 28240 clwlkclwwlklem1 28264 clwlkclwwlklem2 28265 numclwwlk1 28626 wlkl0 28632 numclwlk1lem1 28634 isnvlem 28873 lnoval 29015 normsub0 29399 elunop2 30276 ishst 30477 hstri 30528 aciunf1lem 30901 lmatfval 31666 lmatcl 31668 voliune 32097 volfiniune 32098 snmlval 33193 ttrclss 33706 ttrclselem2 33712 voliunnfl 35748 sdclem1 35828 islshp 36920 lshpnel2N 36926 lshpset2N 37060 dicffval 39115 dicfval 39116 mapdhval 39665 hdmap1fval 39737 hdmap1vallem 39738 hdmap1val 39739 diophin 40510 eldioph4b 40549 eldioph4i 40550 diophren 40551 fperiodmullem 42732 fargshiftfva 44783 paireqne 44851 resmgmhm 45240 0ringdif 45316 |
Copyright terms: Public domain | W3C validator |