| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveqeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fveqeq2d | ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | fveq2d 6865 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
| 3 | 2 | eqeq1d 2732 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: fveqeq2 6870 op1stg 7983 op2ndg 7984 ttrclss 9680 ttrclselem2 9686 fpwwecbv 10604 fpwwelem 10605 fseq1m1p1 13567 ico01fl0 13788 divfl0 13793 hashssdif 14384 cshw1 14794 smumullem 16469 algcvga 16556 vdwlem6 16964 vdwlem8 16966 ramub1lem1 17004 resmgmhm 18645 resmhm 18754 isghmOLD 19155 fislw 19562 pgpfaclem2 20021 0ringdif 20443 abvfval 20726 abvpropd 20751 lspsneq0 20925 reslmhm 20966 lspsneq 21039 mdetunilem7 22512 imasdsf1olem 24268 bcth 25236 ovoliunnul 25415 lognegb 26506 vmaval 27030 2lgslem3c 27316 2lgslem3d 27317 rusgrnumwrdl2 29521 wlkiswwlks2 29812 rusgrnumwwlks 29911 clwlkclwwlklem1 29935 clwlkclwwlklem2 29936 numclwwlk1 30297 wlkl0 30303 numclwlk1lem1 30305 isnvlem 30546 lnoval 30688 normsub0 31072 elunop2 31949 ishst 32150 hstri 32201 aciunf1lem 32593 lmatfval 33811 lmatcl 33813 voliune 34226 volfiniune 34227 snmlval 35325 voliunnfl 37665 sdclem1 37744 islshp 38979 lshpnel2N 38985 lshpset2N 39119 dicffval 41175 dicfval 41176 mapdhval 41725 hdmap1fval 41797 hdmap1vallem 41798 hdmap1val 41799 aks6d1c6isolem1 42169 aks6d1c6lem5 42172 diophin 42767 eldioph4b 42806 eldioph4i 42807 diophren 42808 fperiodmullem 45308 fargshiftfva 47448 paireqne 47516 grimidvtxedg 47889 grimcnv 47892 grimco 47893 isuspgrim0 47898 uhgrimisgrgriclem 47934 clnbgrgrimlem 47937 |
| Copyright terms: Public domain | W3C validator |