| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveqeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fveqeq2d | ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
| 3 | 2 | eqeq1d 2733 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: fveqeq2 6831 op1stg 7933 op2ndg 7934 ttrclss 9610 ttrclselem2 9616 fpwwecbv 10535 fpwwelem 10536 fseq1m1p1 13499 ico01fl0 13723 divfl0 13728 hashssdif 14319 cshw1 14729 smumullem 16403 algcvga 16490 vdwlem6 16898 vdwlem8 16900 ramub1lem1 16938 resmgmhm 18619 resmhm 18728 isghmOLD 19128 fislw 19537 pgpfaclem2 19996 0ringdif 20442 abvfval 20725 abvpropd 20750 lspsneq0 20945 reslmhm 20986 lspsneq 21059 mdetunilem7 22533 imasdsf1olem 24288 bcth 25256 ovoliunnul 25435 lognegb 26526 vmaval 27050 2lgslem3c 27336 2lgslem3d 27337 rusgrnumwrdl2 29565 wlkiswwlks2 29853 rusgrnumwwlks 29955 clwlkclwwlklem1 29979 clwlkclwwlklem2 29980 numclwwlk1 30341 wlkl0 30347 numclwlk1lem1 30349 isnvlem 30590 lnoval 30732 normsub0 31116 elunop2 31993 ishst 32194 hstri 32245 aciunf1lem 32644 lmatfval 33827 lmatcl 33829 voliune 34242 volfiniune 34243 snmlval 35375 voliunnfl 37714 sdclem1 37793 islshp 39088 lshpnel2N 39094 lshpset2N 39228 dicffval 41283 dicfval 41284 mapdhval 41833 hdmap1fval 41905 hdmap1vallem 41906 hdmap1val 41907 aks6d1c6isolem1 42277 aks6d1c6lem5 42280 diophin 42875 eldioph4b 42914 eldioph4i 42915 diophren 42916 fperiodmullem 45414 fargshiftfva 47553 paireqne 47621 grimidvtxedg 47995 grimcnv 47998 grimco 47999 isuspgrim0 48004 uhgrimisgrgriclem 48040 clnbgrgrimlem 48043 |
| Copyright terms: Public domain | W3C validator |