| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveqeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fveqeq2d | ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | fveq2d 6844 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
| 3 | 2 | eqeq1d 2731 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: fveqeq2 6849 op1stg 7959 op2ndg 7960 ttrclss 9649 ttrclselem2 9655 fpwwecbv 10573 fpwwelem 10574 fseq1m1p1 13536 ico01fl0 13757 divfl0 13762 hashssdif 14353 cshw1 14763 smumullem 16438 algcvga 16525 vdwlem6 16933 vdwlem8 16935 ramub1lem1 16973 resmgmhm 18620 resmhm 18729 isghmOLD 19130 fislw 19539 pgpfaclem2 19998 0ringdif 20447 abvfval 20730 abvpropd 20755 lspsneq0 20950 reslmhm 20991 lspsneq 21064 mdetunilem7 22538 imasdsf1olem 24294 bcth 25262 ovoliunnul 25441 lognegb 26532 vmaval 27056 2lgslem3c 27342 2lgslem3d 27343 rusgrnumwrdl2 29567 wlkiswwlks2 29855 rusgrnumwwlks 29954 clwlkclwwlklem1 29978 clwlkclwwlklem2 29979 numclwwlk1 30340 wlkl0 30346 numclwlk1lem1 30348 isnvlem 30589 lnoval 30731 normsub0 31115 elunop2 31992 ishst 32193 hstri 32244 aciunf1lem 32636 lmatfval 33797 lmatcl 33799 voliune 34212 volfiniune 34213 snmlval 35311 voliunnfl 37651 sdclem1 37730 islshp 38965 lshpnel2N 38971 lshpset2N 39105 dicffval 41161 dicfval 41162 mapdhval 41711 hdmap1fval 41783 hdmap1vallem 41784 hdmap1val 41785 aks6d1c6isolem1 42155 aks6d1c6lem5 42158 diophin 42753 eldioph4b 42792 eldioph4i 42793 diophren 42794 fperiodmullem 45294 fargshiftfva 47437 paireqne 47505 grimidvtxedg 47878 grimcnv 47881 grimco 47882 isuspgrim0 47887 uhgrimisgrgriclem 47923 clnbgrgrimlem 47926 |
| Copyright terms: Public domain | W3C validator |