Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveqeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
Ref | Expression |
---|---|
fveqeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fveqeq2d | ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | fveq2d 6787 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
3 | 2 | eqeq1d 2741 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ‘cfv 6437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-iota 6395 df-fv 6445 |
This theorem is referenced by: fveqeq2 6792 op1stg 7852 op2ndg 7853 ttrclss 9487 ttrclselem2 9493 fpwwecbv 10409 fpwwelem 10410 fseq1m1p1 13340 ico01fl0 13548 divfl0 13553 hashssdif 14136 cshw1 14544 smumullem 16208 algcvga 16293 vdwlem6 16696 vdwlem8 16698 ramub1lem1 16736 resmhm 18468 isghm 18843 fislw 19239 pgpfaclem2 19694 abvfval 20087 abvpropd 20111 lspsneq0 20283 reslmhm 20323 lspsneq 20393 mdetunilem7 21776 imasdsf1olem 23535 bcth 24502 ovoliunnul 24680 lognegb 25754 vmaval 26271 2lgslem3c 26555 2lgslem3d 26556 rusgrnumwrdl2 27962 wlkiswwlks2 28249 rusgrnumwwlks 28348 clwlkclwwlklem1 28372 clwlkclwwlklem2 28373 numclwwlk1 28734 wlkl0 28740 numclwlk1lem1 28742 isnvlem 28981 lnoval 29123 normsub0 29507 elunop2 30384 ishst 30585 hstri 30636 aciunf1lem 31008 lmatfval 31773 lmatcl 31775 voliune 32206 volfiniune 32207 snmlval 33302 voliunnfl 35830 sdclem1 35910 islshp 37000 lshpnel2N 37006 lshpset2N 37140 dicffval 39195 dicfval 39196 mapdhval 39745 hdmap1fval 39817 hdmap1vallem 39818 hdmap1val 39819 diophin 40601 eldioph4b 40640 eldioph4i 40641 diophren 40642 fperiodmullem 42849 fargshiftfva 44906 paireqne 44974 resmgmhm 45363 0ringdif 45439 |
Copyright terms: Public domain | W3C validator |