![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fveqeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
Ref | Expression |
---|---|
fveqeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fveqeq2d | ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | fveq2d 6924 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
3 | 2 | eqeq1d 2742 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 |
This theorem is referenced by: fveqeq2 6929 op1stg 8042 op2ndg 8043 ttrclss 9789 ttrclselem2 9795 fpwwecbv 10713 fpwwelem 10714 fseq1m1p1 13659 ico01fl0 13870 divfl0 13875 hashssdif 14461 cshw1 14870 smumullem 16538 algcvga 16626 vdwlem6 17033 vdwlem8 17035 ramub1lem1 17073 resmgmhm 18749 resmhm 18855 isghmOLD 19256 fislw 19667 pgpfaclem2 20126 0ringdif 20553 abvfval 20833 abvpropd 20858 lspsneq0 21033 reslmhm 21074 lspsneq 21147 mdetunilem7 22645 imasdsf1olem 24404 bcth 25382 ovoliunnul 25561 lognegb 26650 vmaval 27174 2lgslem3c 27460 2lgslem3d 27461 rusgrnumwrdl2 29622 wlkiswwlks2 29908 rusgrnumwwlks 30007 clwlkclwwlklem1 30031 clwlkclwwlklem2 30032 numclwwlk1 30393 wlkl0 30399 numclwlk1lem1 30401 isnvlem 30642 lnoval 30784 normsub0 31168 elunop2 32045 ishst 32246 hstri 32297 aciunf1lem 32680 lmatfval 33760 lmatcl 33762 voliune 34193 volfiniune 34194 snmlval 35299 voliunnfl 37624 sdclem1 37703 islshp 38935 lshpnel2N 38941 lshpset2N 39075 dicffval 41131 dicfval 41132 mapdhval 41681 hdmap1fval 41753 hdmap1vallem 41754 hdmap1val 41755 aks6d1c6isolem1 42131 aks6d1c6lem5 42134 diophin 42728 eldioph4b 42767 eldioph4i 42768 diophren 42769 fperiodmullem 45218 fargshiftfva 47317 paireqne 47385 isuspgrim0 47756 grimidvtxedg 47760 grimcnv 47763 grimco 47764 uhgrimisgrgriclem 47782 clnbgrgrimlem 47785 |
Copyright terms: Public domain | W3C validator |