| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveqeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fveqeq2d | ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | fveq2d 6862 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
| 3 | 2 | eqeq1d 2731 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: fveqeq2 6867 op1stg 7980 op2ndg 7981 ttrclss 9673 ttrclselem2 9679 fpwwecbv 10597 fpwwelem 10598 fseq1m1p1 13560 ico01fl0 13781 divfl0 13786 hashssdif 14377 cshw1 14787 smumullem 16462 algcvga 16549 vdwlem6 16957 vdwlem8 16959 ramub1lem1 16997 resmgmhm 18638 resmhm 18747 isghmOLD 19148 fislw 19555 pgpfaclem2 20014 0ringdif 20436 abvfval 20719 abvpropd 20744 lspsneq0 20918 reslmhm 20959 lspsneq 21032 mdetunilem7 22505 imasdsf1olem 24261 bcth 25229 ovoliunnul 25408 lognegb 26499 vmaval 27023 2lgslem3c 27309 2lgslem3d 27310 rusgrnumwrdl2 29514 wlkiswwlks2 29805 rusgrnumwwlks 29904 clwlkclwwlklem1 29928 clwlkclwwlklem2 29929 numclwwlk1 30290 wlkl0 30296 numclwlk1lem1 30298 isnvlem 30539 lnoval 30681 normsub0 31065 elunop2 31942 ishst 32143 hstri 32194 aciunf1lem 32586 lmatfval 33804 lmatcl 33806 voliune 34219 volfiniune 34220 snmlval 35318 voliunnfl 37658 sdclem1 37737 islshp 38972 lshpnel2N 38978 lshpset2N 39112 dicffval 41168 dicfval 41169 mapdhval 41718 hdmap1fval 41790 hdmap1vallem 41791 hdmap1val 41792 aks6d1c6isolem1 42162 aks6d1c6lem5 42165 diophin 42760 eldioph4b 42799 eldioph4i 42800 diophren 42801 fperiodmullem 45301 fargshiftfva 47444 paireqne 47512 grimidvtxedg 47885 grimcnv 47888 grimco 47889 isuspgrim0 47894 uhgrimisgrgriclem 47930 clnbgrgrimlem 47933 |
| Copyright terms: Public domain | W3C validator |