Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveqeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
Ref | Expression |
---|---|
fveqeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fveqeq2d | ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | fveq2d 6765 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
3 | 2 | eqeq1d 2739 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ‘cfv 6423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3071 df-v 3429 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-iota 6381 df-fv 6431 |
This theorem is referenced by: fveqeq2 6770 op1stg 7821 op2ndg 7822 fpwwecbv 10347 fpwwelem 10348 fseq1m1p1 13276 ico01fl0 13483 divfl0 13488 hashssdif 14071 cshw1 14479 smumullem 16143 algcvga 16228 vdwlem6 16631 vdwlem8 16633 ramub1lem1 16671 resmhm 18403 isghm 18778 fislw 19174 pgpfaclem2 19629 abvfval 20022 abvpropd 20046 lspsneq0 20218 reslmhm 20258 lspsneq 20328 mdetunilem7 21711 imasdsf1olem 23470 bcth 24436 ovoliunnul 24614 lognegb 25688 vmaval 26205 2lgslem3c 26489 2lgslem3d 26490 rusgrnumwrdl2 27896 wlkiswwlks2 28181 rusgrnumwwlks 28280 clwlkclwwlklem1 28304 clwlkclwwlklem2 28305 numclwwlk1 28666 wlkl0 28672 numclwlk1lem1 28674 isnvlem 28913 lnoval 29055 normsub0 29439 elunop2 30316 ishst 30517 hstri 30568 aciunf1lem 30941 lmatfval 31706 lmatcl 31708 voliune 32139 volfiniune 32140 snmlval 33235 ttrclss 33748 ttrclselem2 33754 voliunnfl 35790 sdclem1 35870 islshp 36962 lshpnel2N 36968 lshpset2N 37102 dicffval 39157 dicfval 39158 mapdhval 39707 hdmap1fval 39779 hdmap1vallem 39780 hdmap1val 39781 diophin 40552 eldioph4b 40591 eldioph4i 40592 diophren 40593 fperiodmullem 42774 fargshiftfva 44825 paireqne 44893 resmgmhm 45282 0ringdif 45358 |
Copyright terms: Public domain | W3C validator |