![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsetsnf1o | Structured version Visualization version GIF version |
Description: The mapping of an element of a class to a singleton function is a bijection. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fsetsnf.a | ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} |
fsetsnf.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) |
Ref | Expression |
---|---|
fsetsnf1o | ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsetsnf.a | . . 3 ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} | |
2 | fsetsnf.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) | |
3 | 1, 2 | fsetsnf1 46667 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1→𝐴) |
4 | 1, 2 | fsetsnfo 46668 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–onto→𝐴) |
5 | df-f1o 6561 | . 2 ⊢ (𝐹:𝐵–1-1-onto→𝐴 ↔ (𝐹:𝐵–1-1→𝐴 ∧ 𝐹:𝐵–onto→𝐴)) | |
6 | 3, 4, 5 | sylanbrc 581 | 1 ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {cab 2703 ∃wrex 3060 {csn 4633 〈cop 4639 ↦ cmpt 5236 –1-1→wf1 6551 –onto→wfo 6552 –1-1-onto→wf1o 6553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 |
This theorem is referenced by: fsetsnprcnex 46670 |
Copyright terms: Public domain | W3C validator |