| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsetsnf1o | Structured version Visualization version GIF version | ||
| Description: The mapping of an element of a class to a singleton function is a bijection. (Contributed by AV, 13-Sep-2024.) |
| Ref | Expression |
|---|---|
| fsetsnf.a | ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} |
| fsetsnf.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) |
| Ref | Expression |
|---|---|
| fsetsnf1o | ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1-onto→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsetsnf.a | . . 3 ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} | |
| 2 | fsetsnf.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) | |
| 3 | 1, 2 | fsetsnf1 47029 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1→𝐴) |
| 4 | 1, 2 | fsetsnfo 47030 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–onto→𝐴) |
| 5 | df-f1o 6537 | . 2 ⊢ (𝐹:𝐵–1-1-onto→𝐴 ↔ (𝐹:𝐵–1-1→𝐴 ∧ 𝐹:𝐵–onto→𝐴)) | |
| 6 | 3, 4, 5 | sylanbrc 583 | 1 ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1-onto→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 {csn 4601 〈cop 4607 ↦ cmpt 5201 –1-1→wf1 6527 –onto→wfo 6528 –1-1-onto→wf1o 6529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 |
| This theorem is referenced by: fsetsnprcnex 47032 |
| Copyright terms: Public domain | W3C validator |