MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem1 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem1 17855
Description: Lemma 1 for funcestrcsetc 17864. (Contributed by AV, 22-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
Assertion
Ref Expression
funcestrcsetclem1 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝐸(𝑥)   𝐹(𝑥)

Proof of Theorem funcestrcsetclem1
StepHypRef Expression
1 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
21adantr 481 . 2 ((𝜑𝑋𝐵) → 𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
3 fveq2 6771 . . 3 (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋))
43adantl 482 . 2 (((𝜑𝑋𝐵) ∧ 𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋))
5 simpr 485 . 2 ((𝜑𝑋𝐵) → 𝑋𝐵)
6 fvexd 6786 . 2 ((𝜑𝑋𝐵) → (Base‘𝑋) ∈ V)
72, 4, 5, 6fvmptd 6879 1 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  Vcvv 3431  cmpt 5162  cfv 6432  WUnicwun 10457  Basecbs 16910  SetCatcsetc 17788  ExtStrCatcestrc 17836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6390  df-fun 6434  df-fv 6440
This theorem is referenced by:  funcestrcsetclem2  17856  funcestrcsetclem7  17861  funcestrcsetclem8  17862  funcestrcsetclem9  17863  fullestrcsetc  17866  equivestrcsetc  17867
  Copyright terms: Public domain W3C validator