Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcestrcsetclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for funcestrcsetc 17864. (Contributed by AV, 22-Mar-2020.) |
Ref | Expression |
---|---|
funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
Ref | Expression |
---|---|
funcestrcsetclem1 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcestrcsetc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
3 | fveq2 6771 | . . 3 ⊢ (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋)) | |
4 | 3 | adantl 482 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋)) |
5 | simpr 485 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | fvexd 6786 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑋) ∈ V) | |
7 | 2, 4, 5, 6 | fvmptd 6879 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ↦ cmpt 5162 ‘cfv 6432 WUnicwun 10457 Basecbs 16910 SetCatcsetc 17788 ExtStrCatcestrc 17836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 |
This theorem is referenced by: funcestrcsetclem2 17856 funcestrcsetclem7 17861 funcestrcsetclem8 17862 funcestrcsetclem9 17863 fullestrcsetc 17866 equivestrcsetc 17867 |
Copyright terms: Public domain | W3C validator |