![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcestrcsetclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for funcestrcsetc 18106. (Contributed by AV, 22-Mar-2020.) |
Ref | Expression |
---|---|
funcestrcsetc.e | β’ πΈ = (ExtStrCatβπ) |
funcestrcsetc.s | β’ π = (SetCatβπ) |
funcestrcsetc.b | β’ π΅ = (BaseβπΈ) |
funcestrcsetc.c | β’ πΆ = (Baseβπ) |
funcestrcsetc.u | β’ (π β π β WUni) |
funcestrcsetc.f | β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
Ref | Expression |
---|---|
funcestrcsetclem1 | β’ ((π β§ π β π΅) β (πΉβπ) = (Baseβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcestrcsetc.f | . . 3 β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) | |
2 | 1 | adantr 480 | . 2 β’ ((π β§ π β π΅) β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
3 | fveq2 6891 | . . 3 β’ (π₯ = π β (Baseβπ₯) = (Baseβπ)) | |
4 | 3 | adantl 481 | . 2 β’ (((π β§ π β π΅) β§ π₯ = π) β (Baseβπ₯) = (Baseβπ)) |
5 | simpr 484 | . 2 β’ ((π β§ π β π΅) β π β π΅) | |
6 | fvexd 6906 | . 2 β’ ((π β§ π β π΅) β (Baseβπ) β V) | |
7 | 2, 4, 5, 6 | fvmptd 7005 | 1 β’ ((π β§ π β π΅) β (πΉβπ) = (Baseβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 Vcvv 3473 β¦ cmpt 5231 βcfv 6543 WUnicwun 10699 Basecbs 17149 SetCatcsetc 18030 ExtStrCatcestrc 18078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 |
This theorem is referenced by: funcestrcsetclem2 18098 funcestrcsetclem7 18103 funcestrcsetclem8 18104 funcestrcsetclem9 18105 fullestrcsetc 18108 equivestrcsetc 18109 |
Copyright terms: Public domain | W3C validator |