MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem1 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem1 18097
Description: Lemma 1 for funcestrcsetc 18106. (Contributed by AV, 22-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCatβ€˜π‘ˆ)
funcestrcsetc.s 𝑆 = (SetCatβ€˜π‘ˆ)
funcestrcsetc.b 𝐡 = (Baseβ€˜πΈ)
funcestrcsetc.c 𝐢 = (Baseβ€˜π‘†)
funcestrcsetc.u (πœ‘ β†’ π‘ˆ ∈ WUni)
funcestrcsetc.f (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
Assertion
Ref Expression
funcestrcsetclem1 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜π‘‹) = (Baseβ€˜π‘‹))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑋   πœ‘,π‘₯
Allowed substitution hints:   𝐢(π‘₯)   𝑆(π‘₯)   π‘ˆ(π‘₯)   𝐸(π‘₯)   𝐹(π‘₯)

Proof of Theorem funcestrcsetclem1
StepHypRef Expression
1 funcestrcsetc.f . . 3 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
21adantr 480 . 2 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
3 fveq2 6891 . . 3 (π‘₯ = 𝑋 β†’ (Baseβ€˜π‘₯) = (Baseβ€˜π‘‹))
43adantl 481 . 2 (((πœ‘ ∧ 𝑋 ∈ 𝐡) ∧ π‘₯ = 𝑋) β†’ (Baseβ€˜π‘₯) = (Baseβ€˜π‘‹))
5 simpr 484 . 2 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ 𝑋 ∈ 𝐡)
6 fvexd 6906 . 2 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (Baseβ€˜π‘‹) ∈ V)
72, 4, 5, 6fvmptd 7005 1 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜π‘‹) = (Baseβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  Vcvv 3473   ↦ cmpt 5231  β€˜cfv 6543  WUnicwun 10699  Basecbs 17149  SetCatcsetc 18030  ExtStrCatcestrc 18078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551
This theorem is referenced by:  funcestrcsetclem2  18098  funcestrcsetclem7  18103  funcestrcsetclem8  18104  funcestrcsetclem9  18105  fullestrcsetc  18108  equivestrcsetc  18109
  Copyright terms: Public domain W3C validator