Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem1 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem1 17393
 Description: Lemma 1 for funcestrcsetc 17402. (Contributed by AV, 22-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
Assertion
Ref Expression
funcestrcsetclem1 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝐸(𝑥)   𝐹(𝑥)

Proof of Theorem funcestrcsetclem1
StepHypRef Expression
1 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
21adantr 483 . 2 ((𝜑𝑋𝐵) → 𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
3 fveq2 6673 . . 3 (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋))
43adantl 484 . 2 (((𝜑𝑋𝐵) ∧ 𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋))
5 simpr 487 . 2 ((𝜑𝑋𝐵) → 𝑋𝐵)
6 fvexd 6688 . 2 ((𝜑𝑋𝐵) → (Base‘𝑋) ∈ V)
72, 4, 5, 6fvmptd 6778 1 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1536   ∈ wcel 2113  Vcvv 3497   ↦ cmpt 5149  ‘cfv 6358  WUnicwun 10125  Basecbs 16486  SetCatcsetc 17338  ExtStrCatcestrc 17375 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fv 6366 This theorem is referenced by:  funcestrcsetclem2  17394  funcestrcsetclem7  17399  funcestrcsetclem8  17400  funcestrcsetclem9  17401  fullestrcsetc  17404  equivestrcsetc  17405
 Copyright terms: Public domain W3C validator