MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullestrcsetc Structured version   Visualization version   GIF version

Theorem fullestrcsetc 18044
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCatβ€˜π‘ˆ)
funcestrcsetc.s 𝑆 = (SetCatβ€˜π‘ˆ)
funcestrcsetc.b 𝐡 = (Baseβ€˜πΈ)
funcestrcsetc.c 𝐢 = (Baseβ€˜π‘†)
funcestrcsetc.u (πœ‘ β†’ π‘ˆ ∈ WUni)
funcestrcsetc.f (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
funcestrcsetc.g (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
Assertion
Ref Expression
fullestrcsetc (πœ‘ β†’ 𝐹(𝐸 Full 𝑆)𝐺)
Distinct variable groups:   π‘₯,𝐡   πœ‘,π‘₯   π‘₯,𝐢   𝑦,𝐡,π‘₯   πœ‘,𝑦
Allowed substitution hints:   𝐢(𝑦)   𝑆(π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   𝐸(π‘₯,𝑦)   𝐹(π‘₯,𝑦)   𝐺(π‘₯,𝑦)

Proof of Theorem fullestrcsetc
Dummy variables π‘Ž 𝑏 β„Ž π‘˜ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCatβ€˜π‘ˆ)
2 funcestrcsetc.s . . 3 𝑆 = (SetCatβ€˜π‘ˆ)
3 funcestrcsetc.b . . 3 𝐡 = (Baseβ€˜πΈ)
4 funcestrcsetc.c . . 3 𝐢 = (Baseβ€˜π‘†)
5 funcestrcsetc.u . . 3 (πœ‘ β†’ π‘ˆ ∈ WUni)
6 funcestrcsetc.f . . 3 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
7 funcestrcsetc.g . . 3 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
81, 2, 3, 4, 5, 6, 7funcestrcsetc 18042 . 2 (πœ‘ β†’ 𝐹(𝐸 Func 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7funcestrcsetclem8 18040 . . . 4 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)⟢((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)))
105adantr 482 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ π‘ˆ ∈ WUni)
11 eqid 2733 . . . . . . . 8 (Hom β€˜π‘†) = (Hom β€˜π‘†)
121, 2, 3, 4, 5, 6funcestrcsetclem2 18034 . . . . . . . . 9 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ (πΉβ€˜π‘Ž) ∈ π‘ˆ)
1312adantrr 716 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (πΉβ€˜π‘Ž) ∈ π‘ˆ)
141, 2, 3, 4, 5, 6funcestrcsetclem2 18034 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (πΉβ€˜π‘) ∈ π‘ˆ)
1514adantrl 715 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (πΉβ€˜π‘) ∈ π‘ˆ)
162, 10, 11, 13, 15elsetchom 17972 . . . . . . 7 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) ↔ β„Ž:(πΉβ€˜π‘Ž)⟢(πΉβ€˜π‘)))
171, 2, 3, 4, 5, 6funcestrcsetclem1 18033 . . . . . . . . 9 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ (πΉβ€˜π‘Ž) = (Baseβ€˜π‘Ž))
1817adantrr 716 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (πΉβ€˜π‘Ž) = (Baseβ€˜π‘Ž))
191, 2, 3, 4, 5, 6funcestrcsetclem1 18033 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (πΉβ€˜π‘) = (Baseβ€˜π‘))
2019adantrl 715 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (πΉβ€˜π‘) = (Baseβ€˜π‘))
2118, 20feq23d 6664 . . . . . . 7 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž:(πΉβ€˜π‘Ž)⟢(πΉβ€˜π‘) ↔ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
2216, 21bitrd 279 . . . . . 6 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) ↔ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
23 fvex 6856 . . . . . . . . . . . . 13 (Baseβ€˜π‘) ∈ V
24 fvex 6856 . . . . . . . . . . . . 13 (Baseβ€˜π‘Ž) ∈ V
2523, 24pm3.2i 472 . . . . . . . . . . . 12 ((Baseβ€˜π‘) ∈ V ∧ (Baseβ€˜π‘Ž) ∈ V)
26 elmapg 8781 . . . . . . . . . . . 12 (((Baseβ€˜π‘) ∈ V ∧ (Baseβ€˜π‘Ž) ∈ V) β†’ (β„Ž ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)) ↔ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
2725, 26mp1i 13 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)) ↔ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
2827biimpar 479 . . . . . . . . . 10 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ β„Ž ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)))
29 equequ2 2030 . . . . . . . . . . 11 (π‘˜ = β„Ž β†’ (β„Ž = π‘˜ ↔ β„Ž = β„Ž))
3029adantl 483 . . . . . . . . . 10 ((((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) ∧ π‘˜ = β„Ž) β†’ (β„Ž = π‘˜ ↔ β„Ž = β„Ž))
31 eqidd 2734 . . . . . . . . . 10 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ β„Ž = β„Ž)
3228, 30, 31rspcedvd 3582 . . . . . . . . 9 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = π‘˜)
33 eqid 2733 . . . . . . . . . . . . . 14 (Baseβ€˜π‘Ž) = (Baseβ€˜π‘Ž)
34 eqid 2733 . . . . . . . . . . . . . 14 (Baseβ€˜π‘) = (Baseβ€˜π‘)
351, 2, 3, 4, 5, 6, 7, 33, 34funcestrcsetclem6 18038 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) ∧ π‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†’ ((π‘ŽπΊπ‘)β€˜π‘˜) = π‘˜)
36353expa 1119 . . . . . . . . . . . 12 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ π‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†’ ((π‘ŽπΊπ‘)β€˜π‘˜) = π‘˜)
3736eqeq2d 2744 . . . . . . . . . . 11 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ π‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†’ (β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ β„Ž = π‘˜))
3837rexbidva 3170 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = π‘˜))
3938adantr 482 . . . . . . . . 9 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ (βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = π‘˜))
4032, 39mpbird 257 . . . . . . . 8 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜))
41 eqid 2733 . . . . . . . . . . 11 (Hom β€˜πΈ) = (Hom β€˜πΈ)
421, 5estrcbas 18017 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ π‘ˆ = (Baseβ€˜πΈ))
433, 42eqtr4id 2792 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐡 = π‘ˆ)
4443eleq2d 2820 . . . . . . . . . . . . . 14 (πœ‘ β†’ (π‘Ž ∈ 𝐡 ↔ π‘Ž ∈ π‘ˆ))
4544biimpcd 249 . . . . . . . . . . . . 13 (π‘Ž ∈ 𝐡 β†’ (πœ‘ β†’ π‘Ž ∈ π‘ˆ))
4645adantr 482 . . . . . . . . . . . 12 ((π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) β†’ (πœ‘ β†’ π‘Ž ∈ π‘ˆ))
4746impcom 409 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ π‘Ž ∈ π‘ˆ)
4843eleq2d 2820 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝑏 ∈ 𝐡 ↔ 𝑏 ∈ π‘ˆ))
4948biimpcd 249 . . . . . . . . . . . . 13 (𝑏 ∈ 𝐡 β†’ (πœ‘ β†’ 𝑏 ∈ π‘ˆ))
5049adantl 483 . . . . . . . . . . . 12 ((π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) β†’ (πœ‘ β†’ 𝑏 ∈ π‘ˆ))
5150impcom 409 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ 𝑏 ∈ π‘ˆ)
521, 10, 41, 47, 51, 33, 34estrchom 18019 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž(Hom β€˜πΈ)𝑏) = ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)))
5352rexeqdv 3313 . . . . . . . . 9 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
5453adantr 482 . . . . . . . 8 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ (βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
5540, 54mpbird 257 . . . . . . 7 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜))
5655ex 414 . . . . . 6 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘) β†’ βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
5722, 56sylbid 239 . . . . 5 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) β†’ βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
5857ralrimiv 3139 . . . 4 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ βˆ€β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘))βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜))
59 dffo3 7053 . . . 4 ((π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)–ontoβ†’((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) ↔ ((π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)⟢((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) ∧ βˆ€β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘))βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
609, 58, 59sylanbrc 584 . . 3 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)–ontoβ†’((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)))
6160ralrimivva 3194 . 2 (πœ‘ β†’ βˆ€π‘Ž ∈ 𝐡 βˆ€π‘ ∈ 𝐡 (π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)–ontoβ†’((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)))
623, 11, 41isfull2 17803 . 2 (𝐹(𝐸 Full 𝑆)𝐺 ↔ (𝐹(𝐸 Func 𝑆)𝐺 ∧ βˆ€π‘Ž ∈ 𝐡 βˆ€π‘ ∈ 𝐡 (π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)–ontoβ†’((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘))))
638, 61, 62sylanbrc 584 1 (πœ‘ β†’ 𝐹(𝐸 Full 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3444   class class class wbr 5106   ↦ cmpt 5189   I cid 5531   β†Ύ cres 5636  βŸΆwf 6493  β€“ontoβ†’wfo 6495  β€˜cfv 6497  (class class class)co 7358   ∈ cmpo 7360   ↑m cmap 8768  WUnicwun 10641  Basecbs 17088  Hom chom 17149   Func cfunc 17745   Full cful 17794  SetCatcsetc 17966  ExtStrCatcestrc 18014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-wun 10643  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-fz 13431  df-struct 17024  df-slot 17059  df-ndx 17071  df-base 17089  df-hom 17162  df-cco 17163  df-cat 17553  df-cid 17554  df-func 17749  df-full 17796  df-setc 17967  df-estrc 18015
This theorem is referenced by:  equivestrcsetc  18045
  Copyright terms: Public domain W3C validator