MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullestrcsetc Structured version   Visualization version   GIF version

Theorem fullestrcsetc 18136
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCatβ€˜π‘ˆ)
funcestrcsetc.s 𝑆 = (SetCatβ€˜π‘ˆ)
funcestrcsetc.b 𝐡 = (Baseβ€˜πΈ)
funcestrcsetc.c 𝐢 = (Baseβ€˜π‘†)
funcestrcsetc.u (πœ‘ β†’ π‘ˆ ∈ WUni)
funcestrcsetc.f (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
funcestrcsetc.g (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
Assertion
Ref Expression
fullestrcsetc (πœ‘ β†’ 𝐹(𝐸 Full 𝑆)𝐺)
Distinct variable groups:   π‘₯,𝐡   πœ‘,π‘₯   π‘₯,𝐢   𝑦,𝐡,π‘₯   πœ‘,𝑦
Allowed substitution hints:   𝐢(𝑦)   𝑆(π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   𝐸(π‘₯,𝑦)   𝐹(π‘₯,𝑦)   𝐺(π‘₯,𝑦)

Proof of Theorem fullestrcsetc
Dummy variables π‘Ž 𝑏 β„Ž π‘˜ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCatβ€˜π‘ˆ)
2 funcestrcsetc.s . . 3 𝑆 = (SetCatβ€˜π‘ˆ)
3 funcestrcsetc.b . . 3 𝐡 = (Baseβ€˜πΈ)
4 funcestrcsetc.c . . 3 𝐢 = (Baseβ€˜π‘†)
5 funcestrcsetc.u . . 3 (πœ‘ β†’ π‘ˆ ∈ WUni)
6 funcestrcsetc.f . . 3 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
7 funcestrcsetc.g . . 3 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
81, 2, 3, 4, 5, 6, 7funcestrcsetc 18134 . 2 (πœ‘ β†’ 𝐹(𝐸 Func 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7funcestrcsetclem8 18132 . . . 4 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)⟢((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)))
105adantr 479 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ π‘ˆ ∈ WUni)
11 eqid 2725 . . . . . . . 8 (Hom β€˜π‘†) = (Hom β€˜π‘†)
121, 2, 3, 4, 5, 6funcestrcsetclem2 18126 . . . . . . . . 9 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ (πΉβ€˜π‘Ž) ∈ π‘ˆ)
1312adantrr 715 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (πΉβ€˜π‘Ž) ∈ π‘ˆ)
141, 2, 3, 4, 5, 6funcestrcsetclem2 18126 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (πΉβ€˜π‘) ∈ π‘ˆ)
1514adantrl 714 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (πΉβ€˜π‘) ∈ π‘ˆ)
162, 10, 11, 13, 15elsetchom 18064 . . . . . . 7 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) ↔ β„Ž:(πΉβ€˜π‘Ž)⟢(πΉβ€˜π‘)))
171, 2, 3, 4, 5, 6funcestrcsetclem1 18125 . . . . . . . . 9 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ (πΉβ€˜π‘Ž) = (Baseβ€˜π‘Ž))
1817adantrr 715 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (πΉβ€˜π‘Ž) = (Baseβ€˜π‘Ž))
191, 2, 3, 4, 5, 6funcestrcsetclem1 18125 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (πΉβ€˜π‘) = (Baseβ€˜π‘))
2019adantrl 714 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (πΉβ€˜π‘) = (Baseβ€˜π‘))
2118, 20feq23d 6712 . . . . . . 7 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž:(πΉβ€˜π‘Ž)⟢(πΉβ€˜π‘) ↔ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
2216, 21bitrd 278 . . . . . 6 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) ↔ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
23 fvex 6903 . . . . . . . . . . . . 13 (Baseβ€˜π‘) ∈ V
24 fvex 6903 . . . . . . . . . . . . 13 (Baseβ€˜π‘Ž) ∈ V
2523, 24pm3.2i 469 . . . . . . . . . . . 12 ((Baseβ€˜π‘) ∈ V ∧ (Baseβ€˜π‘Ž) ∈ V)
26 elmapg 8851 . . . . . . . . . . . 12 (((Baseβ€˜π‘) ∈ V ∧ (Baseβ€˜π‘Ž) ∈ V) β†’ (β„Ž ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)) ↔ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
2725, 26mp1i 13 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)) ↔ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
2827biimpar 476 . . . . . . . . . 10 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ β„Ž ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)))
29 equequ2 2021 . . . . . . . . . . 11 (π‘˜ = β„Ž β†’ (β„Ž = π‘˜ ↔ β„Ž = β„Ž))
3029adantl 480 . . . . . . . . . 10 ((((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) ∧ π‘˜ = β„Ž) β†’ (β„Ž = π‘˜ ↔ β„Ž = β„Ž))
31 eqidd 2726 . . . . . . . . . 10 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ β„Ž = β„Ž)
3228, 30, 31rspcedvd 3605 . . . . . . . . 9 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = π‘˜)
33 eqid 2725 . . . . . . . . . . . . . 14 (Baseβ€˜π‘Ž) = (Baseβ€˜π‘Ž)
34 eqid 2725 . . . . . . . . . . . . . 14 (Baseβ€˜π‘) = (Baseβ€˜π‘)
351, 2, 3, 4, 5, 6, 7, 33, 34funcestrcsetclem6 18130 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) ∧ π‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†’ ((π‘ŽπΊπ‘)β€˜π‘˜) = π‘˜)
36353expa 1115 . . . . . . . . . . . 12 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ π‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†’ ((π‘ŽπΊπ‘)β€˜π‘˜) = π‘˜)
3736eqeq2d 2736 . . . . . . . . . . 11 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ π‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†’ (β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ β„Ž = π‘˜))
3837rexbidva 3167 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = π‘˜))
3938adantr 479 . . . . . . . . 9 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ (βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = π‘˜))
4032, 39mpbird 256 . . . . . . . 8 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜))
41 eqid 2725 . . . . . . . . . . 11 (Hom β€˜πΈ) = (Hom β€˜πΈ)
421, 5estrcbas 18109 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ π‘ˆ = (Baseβ€˜πΈ))
433, 42eqtr4id 2784 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐡 = π‘ˆ)
4443eleq2d 2811 . . . . . . . . . . . . . 14 (πœ‘ β†’ (π‘Ž ∈ 𝐡 ↔ π‘Ž ∈ π‘ˆ))
4544biimpcd 248 . . . . . . . . . . . . 13 (π‘Ž ∈ 𝐡 β†’ (πœ‘ β†’ π‘Ž ∈ π‘ˆ))
4645adantr 479 . . . . . . . . . . . 12 ((π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) β†’ (πœ‘ β†’ π‘Ž ∈ π‘ˆ))
4746impcom 406 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ π‘Ž ∈ π‘ˆ)
4843eleq2d 2811 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝑏 ∈ 𝐡 ↔ 𝑏 ∈ π‘ˆ))
4948biimpcd 248 . . . . . . . . . . . . 13 (𝑏 ∈ 𝐡 β†’ (πœ‘ β†’ 𝑏 ∈ π‘ˆ))
5049adantl 480 . . . . . . . . . . . 12 ((π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) β†’ (πœ‘ β†’ 𝑏 ∈ π‘ˆ))
5150impcom 406 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ 𝑏 ∈ π‘ˆ)
521, 10, 41, 47, 51, 33, 34estrchom 18111 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž(Hom β€˜πΈ)𝑏) = ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)))
5352rexeqdv 3316 . . . . . . . . 9 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
5453adantr 479 . . . . . . . 8 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ (βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
5540, 54mpbird 256 . . . . . . 7 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜))
5655ex 411 . . . . . 6 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘) β†’ βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
5722, 56sylbid 239 . . . . 5 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) β†’ βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
5857ralrimiv 3135 . . . 4 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ βˆ€β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘))βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜))
59 dffo3 7105 . . . 4 ((π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)–ontoβ†’((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) ↔ ((π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)⟢((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) ∧ βˆ€β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘))βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
609, 58, 59sylanbrc 581 . . 3 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)–ontoβ†’((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)))
6160ralrimivva 3191 . 2 (πœ‘ β†’ βˆ€π‘Ž ∈ 𝐡 βˆ€π‘ ∈ 𝐡 (π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)–ontoβ†’((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)))
623, 11, 41isfull2 17894 . 2 (𝐹(𝐸 Full 𝑆)𝐺 ↔ (𝐹(𝐸 Func 𝑆)𝐺 ∧ βˆ€π‘Ž ∈ 𝐡 βˆ€π‘ ∈ 𝐡 (π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)–ontoβ†’((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘))))
638, 61, 62sylanbrc 581 1 (πœ‘ β†’ 𝐹(𝐸 Full 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  βˆƒwrex 3060  Vcvv 3463   class class class wbr 5144   ↦ cmpt 5227   I cid 5570   β†Ύ cres 5675  βŸΆwf 6539  β€“ontoβ†’wfo 6541  β€˜cfv 6543  (class class class)co 7413   ∈ cmpo 7415   ↑m cmap 8838  WUnicwun 10718  Basecbs 17174  Hom chom 17238   Func cfunc 17834   Full cful 17885  SetCatcsetc 18058  ExtStrCatcestrc 18106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-wun 10720  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-fz 13512  df-struct 17110  df-slot 17145  df-ndx 17157  df-base 17175  df-hom 17251  df-cco 17252  df-cat 17642  df-cid 17643  df-func 17838  df-full 17887  df-setc 18059  df-estrc 18107
This theorem is referenced by:  equivestrcsetc  18137
  Copyright terms: Public domain W3C validator