MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullestrcsetc Structured version   Visualization version   GIF version

Theorem fullestrcsetc 18059
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
fullestrcsetc (𝜑𝐹(𝐸 Full 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fullestrcsetc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . 3 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . 3 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . 3 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
81, 2, 3, 4, 5, 6, 7funcestrcsetc 18057 . 2 (𝜑𝐹(𝐸 Func 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7funcestrcsetclem8 18055 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
105adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑈 ∈ WUni)
11 eqid 2733 . . . . . . . 8 (Hom ‘𝑆) = (Hom ‘𝑆)
121, 2, 3, 4, 5, 6funcestrcsetclem2 18049 . . . . . . . . 9 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ 𝑈)
1312adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) ∈ 𝑈)
141, 2, 3, 4, 5, 6funcestrcsetclem2 18049 . . . . . . . . 9 ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ 𝑈)
1514adantrl 716 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) ∈ 𝑈)
162, 10, 11, 13, 15elsetchom 17990 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ :(𝐹𝑎)⟶(𝐹𝑏)))
171, 2, 3, 4, 5, 6funcestrcsetclem1 18048 . . . . . . . . 9 ((𝜑𝑎𝐵) → (𝐹𝑎) = (Base‘𝑎))
1817adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) = (Base‘𝑎))
191, 2, 3, 4, 5, 6funcestrcsetclem1 18048 . . . . . . . . 9 ((𝜑𝑏𝐵) → (𝐹𝑏) = (Base‘𝑏))
2019adantrl 716 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) = (Base‘𝑏))
2118, 20feq23d 6651 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (:(𝐹𝑎)⟶(𝐹𝑏) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
2216, 21bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
23 fvex 6841 . . . . . . . . . . . . 13 (Base‘𝑏) ∈ V
24 fvex 6841 . . . . . . . . . . . . 13 (Base‘𝑎) ∈ V
2523, 24pm3.2i 470 . . . . . . . . . . . 12 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
26 elmapg 8769 . . . . . . . . . . . 12 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
2725, 26mp1i 13 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
2827biimpar 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))
29 equequ2 2027 . . . . . . . . . . 11 (𝑘 = → ( = 𝑘 = ))
3029adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) ∧ 𝑘 = ) → ( = 𝑘 = ))
31 eqidd 2734 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → = )
3228, 30, 31rspcedvd 3575 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = 𝑘)
33 eqid 2733 . . . . . . . . . . . . . 14 (Base‘𝑎) = (Base‘𝑎)
34 eqid 2733 . . . . . . . . . . . . . 14 (Base‘𝑏) = (Base‘𝑏)
351, 2, 3, 4, 5, 6, 7, 33, 34funcestrcsetclem6 18053 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
36353expa 1118 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
3736eqeq2d 2744 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ( = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
3837rexbidva 3155 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = 𝑘))
3938adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → (∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = 𝑘))
4032, 39mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘))
41 eqid 2733 . . . . . . . . . . 11 (Hom ‘𝐸) = (Hom ‘𝐸)
421, 5estrcbas 18033 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝐸))
433, 42eqtr4id 2787 . . . . . . . . . . . . . . 15 (𝜑𝐵 = 𝑈)
4443eleq2d 2819 . . . . . . . . . . . . . 14 (𝜑 → (𝑎𝐵𝑎𝑈))
4544biimpcd 249 . . . . . . . . . . . . 13 (𝑎𝐵 → (𝜑𝑎𝑈))
4645adantr 480 . . . . . . . . . . . 12 ((𝑎𝐵𝑏𝐵) → (𝜑𝑎𝑈))
4746impcom 407 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝑈)
4843eleq2d 2819 . . . . . . . . . . . . . 14 (𝜑 → (𝑏𝐵𝑏𝑈))
4948biimpcd 249 . . . . . . . . . . . . 13 (𝑏𝐵 → (𝜑𝑏𝑈))
5049adantl 481 . . . . . . . . . . . 12 ((𝑎𝐵𝑏𝐵) → (𝜑𝑏𝑈))
5150impcom 407 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝑈)
521, 10, 41, 47, 51, 33, 34estrchom 18035 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(Hom ‘𝐸)𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
5352rexeqdv 3294 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘)))
5453adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → (∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘)))
5540, 54mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
5655ex 412 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
5722, 56sylbid 240 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
5857ralrimiv 3124 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀ ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
59 dffo3 7041 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–onto→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ∧ ∀ ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
609, 58, 59sylanbrc 583 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–onto→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
6160ralrimivva 3176 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–onto→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
623, 11, 41isfull2 17822 . 2 (𝐹(𝐸 Full 𝑆)𝐺 ↔ (𝐹(𝐸 Func 𝑆)𝐺 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–onto→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))))
638, 61, 62sylanbrc 583 1 (𝜑𝐹(𝐸 Full 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437   class class class wbr 5093  cmpt 5174   I cid 5513  cres 5621  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7352  cmpo 7354  m cmap 8756  WUnicwun 10598  Basecbs 17122  Hom chom 17174   Func cfunc 17763   Full cful 17813  SetCatcsetc 17984  ExtStrCatcestrc 18030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-wun 10600  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-cat 17576  df-cid 17577  df-func 17767  df-full 17815  df-setc 17985  df-estrc 18031
This theorem is referenced by:  equivestrcsetc  18060
  Copyright terms: Public domain W3C validator