MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullestrcsetc Structured version   Visualization version   GIF version

Theorem fullestrcsetc 17404
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
fullestrcsetc (𝜑𝐹(𝐸 Full 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fullestrcsetc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . 3 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . 3 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . 3 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
81, 2, 3, 4, 5, 6, 7funcestrcsetc 17402 . 2 (𝜑𝐹(𝐸 Func 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7funcestrcsetclem8 17400 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
105adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑈 ∈ WUni)
11 eqid 2824 . . . . . . . 8 (Hom ‘𝑆) = (Hom ‘𝑆)
121, 2, 3, 4, 5, 6funcestrcsetclem2 17394 . . . . . . . . 9 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ 𝑈)
1312adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) ∈ 𝑈)
141, 2, 3, 4, 5, 6funcestrcsetclem2 17394 . . . . . . . . 9 ((𝜑𝑏𝐵) → (𝐹𝑏) ∈ 𝑈)
1514adantrl 714 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) ∈ 𝑈)
162, 10, 11, 13, 15elsetchom 17344 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ :(𝐹𝑎)⟶(𝐹𝑏)))
171, 2, 3, 4, 5, 6funcestrcsetclem1 17393 . . . . . . . . 9 ((𝜑𝑎𝐵) → (𝐹𝑎) = (Base‘𝑎))
1817adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) = (Base‘𝑎))
191, 2, 3, 4, 5, 6funcestrcsetclem1 17393 . . . . . . . . 9 ((𝜑𝑏𝐵) → (𝐹𝑏) = (Base‘𝑏))
2019adantrl 714 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) = (Base‘𝑏))
2118, 20feq23d 6512 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (:(𝐹𝑎)⟶(𝐹𝑏) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
2216, 21bitrd 281 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
23 fvex 6686 . . . . . . . . . . . . 13 (Base‘𝑏) ∈ V
24 fvex 6686 . . . . . . . . . . . . 13 (Base‘𝑎) ∈ V
2523, 24pm3.2i 473 . . . . . . . . . . . 12 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
26 elmapg 8422 . . . . . . . . . . . 12 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
2725, 26mp1i 13 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
2827biimpar 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))
29 equequ2 2032 . . . . . . . . . . 11 (𝑘 = → ( = 𝑘 = ))
3029adantl 484 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) ∧ 𝑘 = ) → ( = 𝑘 = ))
31 eqidd 2825 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → = )
3228, 30, 31rspcedvd 3629 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = 𝑘)
33 eqid 2824 . . . . . . . . . . . . . 14 (Base‘𝑎) = (Base‘𝑎)
34 eqid 2824 . . . . . . . . . . . . . 14 (Base‘𝑏) = (Base‘𝑏)
351, 2, 3, 4, 5, 6, 7, 33, 34funcestrcsetclem6 17398 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
36353expa 1114 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
3736eqeq2d 2835 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ( = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
3837rexbidva 3299 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = 𝑘))
3938adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → (∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = 𝑘))
4032, 39mpbird 259 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘))
41 eqid 2824 . . . . . . . . . . 11 (Hom ‘𝐸) = (Hom ‘𝐸)
421, 5estrcbas 17378 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝐸))
4342, 3syl6reqr 2878 . . . . . . . . . . . . . . 15 (𝜑𝐵 = 𝑈)
4443eleq2d 2901 . . . . . . . . . . . . . 14 (𝜑 → (𝑎𝐵𝑎𝑈))
4544biimpcd 251 . . . . . . . . . . . . 13 (𝑎𝐵 → (𝜑𝑎𝑈))
4645adantr 483 . . . . . . . . . . . 12 ((𝑎𝐵𝑏𝐵) → (𝜑𝑎𝑈))
4746impcom 410 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝑈)
4843eleq2d 2901 . . . . . . . . . . . . . 14 (𝜑 → (𝑏𝐵𝑏𝑈))
4948biimpcd 251 . . . . . . . . . . . . 13 (𝑏𝐵 → (𝜑𝑏𝑈))
5049adantl 484 . . . . . . . . . . . 12 ((𝑎𝐵𝑏𝐵) → (𝜑𝑏𝑈))
5150impcom 410 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝑈)
521, 10, 41, 47, 51, 33, 34estrchom 17380 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(Hom ‘𝐸)𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
5352rexeqdv 3419 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘)))
5453adantr 483 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → (∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘) ↔ ∃𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) = ((𝑎𝐺𝑏)‘𝑘)))
5540, 54mpbird 259 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
5655ex 415 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
5722, 56sylbid 242 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) → ∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
5857ralrimiv 3184 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀ ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘))
59 dffo3 6871 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–onto→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ∧ ∀ ∈ ((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))∃𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) = ((𝑎𝐺𝑏)‘𝑘)))
609, 58, 59sylanbrc 585 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–onto→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
6160ralrimivva 3194 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–onto→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
623, 11, 41isfull2 17184 . 2 (𝐹(𝐸 Full 𝑆)𝐺 ↔ (𝐹(𝐸 Func 𝑆)𝐺 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–onto→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))))
638, 61, 62sylanbrc 585 1 (𝜑𝐹(𝐸 Full 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  wrex 3142  Vcvv 3497   class class class wbr 5069  cmpt 5149   I cid 5462  cres 5560  wf 6354  ontowfo 6356  cfv 6358  (class class class)co 7159  cmpo 7161  m cmap 8409  WUnicwun 10125  Basecbs 16486  Hom chom 16579   Func cfunc 17127   Full cful 17175  SetCatcsetc 17338  ExtStrCatcestrc 17375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-wun 10127  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-hom 16592  df-cco 16593  df-cat 16942  df-cid 16943  df-func 17131  df-full 17177  df-setc 17339  df-estrc 17376
This theorem is referenced by:  equivestrcsetc  17405
  Copyright terms: Public domain W3C validator