MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullestrcsetc Structured version   Visualization version   GIF version

Theorem fullestrcsetc 18103
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCatβ€˜π‘ˆ)
funcestrcsetc.s 𝑆 = (SetCatβ€˜π‘ˆ)
funcestrcsetc.b 𝐡 = (Baseβ€˜πΈ)
funcestrcsetc.c 𝐢 = (Baseβ€˜π‘†)
funcestrcsetc.u (πœ‘ β†’ π‘ˆ ∈ WUni)
funcestrcsetc.f (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
funcestrcsetc.g (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
Assertion
Ref Expression
fullestrcsetc (πœ‘ β†’ 𝐹(𝐸 Full 𝑆)𝐺)
Distinct variable groups:   π‘₯,𝐡   πœ‘,π‘₯   π‘₯,𝐢   𝑦,𝐡,π‘₯   πœ‘,𝑦
Allowed substitution hints:   𝐢(𝑦)   𝑆(π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   𝐸(π‘₯,𝑦)   𝐹(π‘₯,𝑦)   𝐺(π‘₯,𝑦)

Proof of Theorem fullestrcsetc
Dummy variables π‘Ž 𝑏 β„Ž π‘˜ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCatβ€˜π‘ˆ)
2 funcestrcsetc.s . . 3 𝑆 = (SetCatβ€˜π‘ˆ)
3 funcestrcsetc.b . . 3 𝐡 = (Baseβ€˜πΈ)
4 funcestrcsetc.c . . 3 𝐢 = (Baseβ€˜π‘†)
5 funcestrcsetc.u . . 3 (πœ‘ β†’ π‘ˆ ∈ WUni)
6 funcestrcsetc.f . . 3 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
7 funcestrcsetc.g . . 3 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
81, 2, 3, 4, 5, 6, 7funcestrcsetc 18101 . 2 (πœ‘ β†’ 𝐹(𝐸 Func 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7funcestrcsetclem8 18099 . . . 4 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)⟢((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)))
105adantr 482 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ π‘ˆ ∈ WUni)
11 eqid 2733 . . . . . . . 8 (Hom β€˜π‘†) = (Hom β€˜π‘†)
121, 2, 3, 4, 5, 6funcestrcsetclem2 18093 . . . . . . . . 9 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ (πΉβ€˜π‘Ž) ∈ π‘ˆ)
1312adantrr 716 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (πΉβ€˜π‘Ž) ∈ π‘ˆ)
141, 2, 3, 4, 5, 6funcestrcsetclem2 18093 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (πΉβ€˜π‘) ∈ π‘ˆ)
1514adantrl 715 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (πΉβ€˜π‘) ∈ π‘ˆ)
162, 10, 11, 13, 15elsetchom 18031 . . . . . . 7 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) ↔ β„Ž:(πΉβ€˜π‘Ž)⟢(πΉβ€˜π‘)))
171, 2, 3, 4, 5, 6funcestrcsetclem1 18092 . . . . . . . . 9 ((πœ‘ ∧ π‘Ž ∈ 𝐡) β†’ (πΉβ€˜π‘Ž) = (Baseβ€˜π‘Ž))
1817adantrr 716 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (πΉβ€˜π‘Ž) = (Baseβ€˜π‘Ž))
191, 2, 3, 4, 5, 6funcestrcsetclem1 18092 . . . . . . . . 9 ((πœ‘ ∧ 𝑏 ∈ 𝐡) β†’ (πΉβ€˜π‘) = (Baseβ€˜π‘))
2019adantrl 715 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (πΉβ€˜π‘) = (Baseβ€˜π‘))
2118, 20feq23d 6713 . . . . . . 7 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž:(πΉβ€˜π‘Ž)⟢(πΉβ€˜π‘) ↔ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
2216, 21bitrd 279 . . . . . 6 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) ↔ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
23 fvex 6905 . . . . . . . . . . . . 13 (Baseβ€˜π‘) ∈ V
24 fvex 6905 . . . . . . . . . . . . 13 (Baseβ€˜π‘Ž) ∈ V
2523, 24pm3.2i 472 . . . . . . . . . . . 12 ((Baseβ€˜π‘) ∈ V ∧ (Baseβ€˜π‘Ž) ∈ V)
26 elmapg 8833 . . . . . . . . . . . 12 (((Baseβ€˜π‘) ∈ V ∧ (Baseβ€˜π‘Ž) ∈ V) β†’ (β„Ž ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)) ↔ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
2725, 26mp1i 13 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)) ↔ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)))
2827biimpar 479 . . . . . . . . . 10 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ β„Ž ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)))
29 equequ2 2030 . . . . . . . . . . 11 (π‘˜ = β„Ž β†’ (β„Ž = π‘˜ ↔ β„Ž = β„Ž))
3029adantl 483 . . . . . . . . . 10 ((((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) ∧ π‘˜ = β„Ž) β†’ (β„Ž = π‘˜ ↔ β„Ž = β„Ž))
31 eqidd 2734 . . . . . . . . . 10 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ β„Ž = β„Ž)
3228, 30, 31rspcedvd 3615 . . . . . . . . 9 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = π‘˜)
33 eqid 2733 . . . . . . . . . . . . . 14 (Baseβ€˜π‘Ž) = (Baseβ€˜π‘Ž)
34 eqid 2733 . . . . . . . . . . . . . 14 (Baseβ€˜π‘) = (Baseβ€˜π‘)
351, 2, 3, 4, 5, 6, 7, 33, 34funcestrcsetclem6 18097 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) ∧ π‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†’ ((π‘ŽπΊπ‘)β€˜π‘˜) = π‘˜)
36353expa 1119 . . . . . . . . . . . 12 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ π‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†’ ((π‘ŽπΊπ‘)β€˜π‘˜) = π‘˜)
3736eqeq2d 2744 . . . . . . . . . . 11 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ π‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))) β†’ (β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ β„Ž = π‘˜))
3837rexbidva 3177 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = π‘˜))
3938adantr 482 . . . . . . . . 9 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ (βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = π‘˜))
4032, 39mpbird 257 . . . . . . . 8 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜))
41 eqid 2733 . . . . . . . . . . 11 (Hom β€˜πΈ) = (Hom β€˜πΈ)
421, 5estrcbas 18076 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ π‘ˆ = (Baseβ€˜πΈ))
433, 42eqtr4id 2792 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐡 = π‘ˆ)
4443eleq2d 2820 . . . . . . . . . . . . . 14 (πœ‘ β†’ (π‘Ž ∈ 𝐡 ↔ π‘Ž ∈ π‘ˆ))
4544biimpcd 248 . . . . . . . . . . . . 13 (π‘Ž ∈ 𝐡 β†’ (πœ‘ β†’ π‘Ž ∈ π‘ˆ))
4645adantr 482 . . . . . . . . . . . 12 ((π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) β†’ (πœ‘ β†’ π‘Ž ∈ π‘ˆ))
4746impcom 409 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ π‘Ž ∈ π‘ˆ)
4843eleq2d 2820 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝑏 ∈ 𝐡 ↔ 𝑏 ∈ π‘ˆ))
4948biimpcd 248 . . . . . . . . . . . . 13 (𝑏 ∈ 𝐡 β†’ (πœ‘ β†’ 𝑏 ∈ π‘ˆ))
5049adantl 483 . . . . . . . . . . . 12 ((π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡) β†’ (πœ‘ β†’ 𝑏 ∈ π‘ˆ))
5150impcom 409 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ 𝑏 ∈ π‘ˆ)
521, 10, 41, 47, 51, 33, 34estrchom 18078 . . . . . . . . . 10 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘Ž(Hom β€˜πΈ)𝑏) = ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž)))
5352rexeqdv 3327 . . . . . . . . 9 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
5453adantr 482 . . . . . . . 8 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ (βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜) ↔ βˆƒπ‘˜ ∈ ((Baseβ€˜π‘) ↑m (Baseβ€˜π‘Ž))β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
5540, 54mpbird 257 . . . . . . 7 (((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) ∧ β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘)) β†’ βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜))
5655ex 414 . . . . . 6 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž:(Baseβ€˜π‘Ž)⟢(Baseβ€˜π‘) β†’ βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
5722, 56sylbid 239 . . . . 5 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) β†’ βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
5857ralrimiv 3146 . . . 4 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ βˆ€β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘))βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜))
59 dffo3 7104 . . . 4 ((π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)–ontoβ†’((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) ↔ ((π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)⟢((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)) ∧ βˆ€β„Ž ∈ ((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘))βˆƒπ‘˜ ∈ (π‘Ž(Hom β€˜πΈ)𝑏)β„Ž = ((π‘ŽπΊπ‘)β€˜π‘˜)))
609, 58, 59sylanbrc 584 . . 3 ((πœ‘ ∧ (π‘Ž ∈ 𝐡 ∧ 𝑏 ∈ 𝐡)) β†’ (π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)–ontoβ†’((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)))
6160ralrimivva 3201 . 2 (πœ‘ β†’ βˆ€π‘Ž ∈ 𝐡 βˆ€π‘ ∈ 𝐡 (π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)–ontoβ†’((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘)))
623, 11, 41isfull2 17862 . 2 (𝐹(𝐸 Full 𝑆)𝐺 ↔ (𝐹(𝐸 Func 𝑆)𝐺 ∧ βˆ€π‘Ž ∈ 𝐡 βˆ€π‘ ∈ 𝐡 (π‘ŽπΊπ‘):(π‘Ž(Hom β€˜πΈ)𝑏)–ontoβ†’((πΉβ€˜π‘Ž)(Hom β€˜π‘†)(πΉβ€˜π‘))))
638, 61, 62sylanbrc 584 1 (πœ‘ β†’ 𝐹(𝐸 Full 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3475   class class class wbr 5149   ↦ cmpt 5232   I cid 5574   β†Ύ cres 5679  βŸΆwf 6540  β€“ontoβ†’wfo 6542  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411   ↑m cmap 8820  WUnicwun 10695  Basecbs 17144  Hom chom 17208   Func cfunc 17804   Full cful 17853  SetCatcsetc 18025  ExtStrCatcestrc 18073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-wun 10697  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-slot 17115  df-ndx 17127  df-base 17145  df-hom 17221  df-cco 17222  df-cat 17612  df-cid 17613  df-func 17808  df-full 17855  df-setc 18026  df-estrc 18074
This theorem is referenced by:  equivestrcsetc  18104
  Copyright terms: Public domain W3C validator