MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem8 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem8 18159
Description: Lemma 8 for funcestrcsetc 18161. (Contributed by AV, 15-Feb-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetclem8
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6856 . . . 4 ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))–1-1-onto→((Base‘𝑌) ↑m (Base‘𝑋))
2 f1of 6818 . . . 4 (( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))–1-1-onto→((Base‘𝑌) ↑m (Base‘𝑋)) → ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))⟶((Base‘𝑌) ↑m (Base‘𝑋)))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))⟶((Base‘𝑌) ↑m (Base‘𝑋)))
4 elmapi 8863 . . . . 5 (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) → 𝑓:(Base‘𝑋)⟶(Base‘𝑌))
5 fvex 6889 . . . . . . . . . 10 (Base‘𝑌) ∈ V
6 fvex 6889 . . . . . . . . . 10 (Base‘𝑋) ∈ V
75, 6pm3.2i 470 . . . . . . . . 9 ((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V)
8 elmapg 8853 . . . . . . . . . 10 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↔ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)))
98bicomd 223 . . . . . . . . 9 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
107, 9mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
1110biimpa 476 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
12 funcestrcsetc.e . . . . . . . . . . 11 𝐸 = (ExtStrCat‘𝑈)
13 funcestrcsetc.s . . . . . . . . . . 11 𝑆 = (SetCat‘𝑈)
14 funcestrcsetc.b . . . . . . . . . . 11 𝐵 = (Base‘𝐸)
15 funcestrcsetc.c . . . . . . . . . . 11 𝐶 = (Base‘𝑆)
16 funcestrcsetc.u . . . . . . . . . . 11 (𝜑𝑈 ∈ WUni)
17 funcestrcsetc.f . . . . . . . . . . 11 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
1812, 13, 14, 15, 16, 17funcestrcsetclem1 18152 . . . . . . . . . 10 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
1918adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) = (Base‘𝑌))
2012, 13, 14, 15, 16, 17funcestrcsetclem1 18152 . . . . . . . . . 10 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
2120adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) = (Base‘𝑋))
2219, 21oveq12d 7423 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑌) ↑m (𝐹𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
2322adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → ((𝐹𝑌) ↑m (𝐹𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
2411, 23eleqtrrd 2837 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋)))
2524ex 412 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋))))
264, 25syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋))))
2726ssrdv 3964 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((Base‘𝑌) ↑m (Base‘𝑋)) ⊆ ((𝐹𝑌) ↑m (𝐹𝑋)))
283, 27fssd 6723 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))⟶((𝐹𝑌) ↑m (𝐹𝑋)))
29 funcestrcsetc.g . . . 4 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
30 eqid 2735 . . . 4 (Base‘𝑋) = (Base‘𝑋)
31 eqid 2735 . . . 4 (Base‘𝑌) = (Base‘𝑌)
3212, 13, 14, 15, 16, 17, 29, 30, 31funcestrcsetclem5 18156 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))))
3316adantr 480 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑈 ∈ WUni)
34 eqid 2735 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
3512, 16estrcbas 18137 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝐸))
3614, 35eqtr4id 2789 . . . . . . . 8 (𝜑𝐵 = 𝑈)
3736eleq2d 2820 . . . . . . 7 (𝜑 → (𝑋𝐵𝑋𝑈))
3837biimpcd 249 . . . . . 6 (𝑋𝐵 → (𝜑𝑋𝑈))
3938adantr 480 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝜑𝑋𝑈))
4039impcom 407 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝑈)
4136eleq2d 2820 . . . . . . 7 (𝜑 → (𝑌𝐵𝑌𝑈))
4241biimpd 229 . . . . . 6 (𝜑 → (𝑌𝐵𝑌𝑈))
4342adantld 490 . . . . 5 (𝜑 → ((𝑋𝐵𝑌𝐵) → 𝑌𝑈))
4443imp 406 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝑈)
4512, 33, 34, 40, 44, 30, 31estrchom 18139 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(Hom ‘𝐸)𝑌) = ((Base‘𝑌) ↑m (Base‘𝑋)))
46 eqid 2735 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4712, 13, 14, 15, 16, 17funcestrcsetclem2 18153 . . . . 5 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
4847adantrr 717 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝑈)
4912, 13, 14, 15, 16, 17funcestrcsetclem2 18153 . . . . 5 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
5049adantrl 716 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝑈)
5113, 33, 46, 48, 50setchom 18093 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) = ((𝐹𝑌) ↑m (𝐹𝑋)))
5232, 45, 51feq123d 6695 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) ↔ ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))⟶((𝐹𝑌) ↑m (𝐹𝑋))))
5328, 52mpbird 257 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cmpt 5201   I cid 5547  cres 5656  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cmpo 7407  m cmap 8840  WUnicwun 10714  Basecbs 17228  Hom chom 17282  SetCatcsetc 18088  ExtStrCatcestrc 18134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-wun 10716  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-hom 17295  df-cco 17296  df-setc 18089  df-estrc 18135
This theorem is referenced by:  funcestrcsetc  18161  fthestrcsetc  18162  fullestrcsetc  18163
  Copyright terms: Public domain W3C validator