MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem8 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem8 17678
Description: Lemma 8 for funcestrcsetc 17680. (Contributed by AV, 15-Feb-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetclem8
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6716 . . . 4 ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))–1-1-onto→((Base‘𝑌) ↑m (Base‘𝑋))
2 f1of 6679 . . . 4 (( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))–1-1-onto→((Base‘𝑌) ↑m (Base‘𝑋)) → ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))⟶((Base‘𝑌) ↑m (Base‘𝑋)))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))⟶((Base‘𝑌) ↑m (Base‘𝑋)))
4 elmapi 8550 . . . . 5 (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) → 𝑓:(Base‘𝑋)⟶(Base‘𝑌))
5 fvex 6748 . . . . . . . . . 10 (Base‘𝑌) ∈ V
6 fvex 6748 . . . . . . . . . 10 (Base‘𝑋) ∈ V
75, 6pm3.2i 474 . . . . . . . . 9 ((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V)
8 elmapg 8541 . . . . . . . . . 10 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↔ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)))
98bicomd 226 . . . . . . . . 9 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
107, 9mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
1110biimpa 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
12 funcestrcsetc.e . . . . . . . . . . 11 𝐸 = (ExtStrCat‘𝑈)
13 funcestrcsetc.s . . . . . . . . . . 11 𝑆 = (SetCat‘𝑈)
14 funcestrcsetc.b . . . . . . . . . . 11 𝐵 = (Base‘𝐸)
15 funcestrcsetc.c . . . . . . . . . . 11 𝐶 = (Base‘𝑆)
16 funcestrcsetc.u . . . . . . . . . . 11 (𝜑𝑈 ∈ WUni)
17 funcestrcsetc.f . . . . . . . . . . 11 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
1812, 13, 14, 15, 16, 17funcestrcsetclem1 17671 . . . . . . . . . 10 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
1918adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) = (Base‘𝑌))
2012, 13, 14, 15, 16, 17funcestrcsetclem1 17671 . . . . . . . . . 10 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
2120adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) = (Base‘𝑋))
2219, 21oveq12d 7249 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑌) ↑m (𝐹𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
2322adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → ((𝐹𝑌) ↑m (𝐹𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
2411, 23eleqtrrd 2842 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋)))
2524ex 416 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋))))
264, 25syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋))))
2726ssrdv 3921 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((Base‘𝑌) ↑m (Base‘𝑋)) ⊆ ((𝐹𝑌) ↑m (𝐹𝑋)))
283, 27fssd 6581 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))⟶((𝐹𝑌) ↑m (𝐹𝑋)))
29 funcestrcsetc.g . . . 4 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
30 eqid 2738 . . . 4 (Base‘𝑋) = (Base‘𝑋)
31 eqid 2738 . . . 4 (Base‘𝑌) = (Base‘𝑌)
3212, 13, 14, 15, 16, 17, 29, 30, 31funcestrcsetclem5 17675 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))))
3316adantr 484 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑈 ∈ WUni)
34 eqid 2738 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
3512, 16estrcbas 17656 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝐸))
3614, 35eqtr4id 2798 . . . . . . . 8 (𝜑𝐵 = 𝑈)
3736eleq2d 2824 . . . . . . 7 (𝜑 → (𝑋𝐵𝑋𝑈))
3837biimpcd 252 . . . . . 6 (𝑋𝐵 → (𝜑𝑋𝑈))
3938adantr 484 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝜑𝑋𝑈))
4039impcom 411 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝑈)
4136eleq2d 2824 . . . . . . 7 (𝜑 → (𝑌𝐵𝑌𝑈))
4241biimpd 232 . . . . . 6 (𝜑 → (𝑌𝐵𝑌𝑈))
4342adantld 494 . . . . 5 (𝜑 → ((𝑋𝐵𝑌𝐵) → 𝑌𝑈))
4443imp 410 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝑈)
4512, 33, 34, 40, 44, 30, 31estrchom 17658 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(Hom ‘𝐸)𝑌) = ((Base‘𝑌) ↑m (Base‘𝑋)))
46 eqid 2738 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4712, 13, 14, 15, 16, 17funcestrcsetclem2 17672 . . . . 5 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
4847adantrr 717 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝑈)
4912, 13, 14, 15, 16, 17funcestrcsetclem2 17672 . . . . 5 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
5049adantrl 716 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝑈)
5113, 33, 46, 48, 50setchom 17610 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) = ((𝐹𝑌) ↑m (𝐹𝑋)))
5232, 45, 51feq123d 6552 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) ↔ ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))⟶((𝐹𝑌) ↑m (𝐹𝑋))))
5328, 52mpbird 260 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2111  Vcvv 3420  cmpt 5149   I cid 5468  cres 5567  wf 6393  1-1-ontowf1o 6396  cfv 6397  (class class class)co 7231  cmpo 7233  m cmap 8528  WUnicwun 10338  Basecbs 16784  Hom chom 16837  SetCatcsetc 17605  ExtStrCatcestrc 17653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-om 7663  df-1st 7779  df-2nd 7780  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-1o 8222  df-er 8411  df-map 8530  df-en 8647  df-dom 8648  df-sdom 8649  df-fin 8650  df-wun 10340  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-nn 11855  df-2 11917  df-3 11918  df-4 11919  df-5 11920  df-6 11921  df-7 11922  df-8 11923  df-9 11924  df-n0 12115  df-z 12201  df-dec 12318  df-uz 12463  df-fz 13120  df-struct 16724  df-slot 16759  df-ndx 16769  df-base 16785  df-hom 16850  df-cco 16851  df-setc 17606  df-estrc 17654
This theorem is referenced by:  funcestrcsetc  17680  fthestrcsetc  17681  fullestrcsetc  17682
  Copyright terms: Public domain W3C validator