MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem8 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem8 17389
Description: Lemma 8 for funcestrcsetc 17391. (Contributed by AV, 15-Feb-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetclem8
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6645 . . . 4 ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))–1-1-onto→((Base‘𝑌) ↑m (Base‘𝑋))
2 f1of 6608 . . . 4 (( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))–1-1-onto→((Base‘𝑌) ↑m (Base‘𝑋)) → ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))⟶((Base‘𝑌) ↑m (Base‘𝑋)))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))⟶((Base‘𝑌) ↑m (Base‘𝑋)))
4 elmapi 8420 . . . . 5 (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) → 𝑓:(Base‘𝑋)⟶(Base‘𝑌))
5 fvex 6676 . . . . . . . . . 10 (Base‘𝑌) ∈ V
6 fvex 6676 . . . . . . . . . 10 (Base‘𝑋) ∈ V
75, 6pm3.2i 473 . . . . . . . . 9 ((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V)
8 elmapg 8411 . . . . . . . . . 10 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↔ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)))
98bicomd 225 . . . . . . . . 9 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
107, 9mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
1110biimpa 479 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
12 funcestrcsetc.e . . . . . . . . . . 11 𝐸 = (ExtStrCat‘𝑈)
13 funcestrcsetc.s . . . . . . . . . . 11 𝑆 = (SetCat‘𝑈)
14 funcestrcsetc.b . . . . . . . . . . 11 𝐵 = (Base‘𝐸)
15 funcestrcsetc.c . . . . . . . . . . 11 𝐶 = (Base‘𝑆)
16 funcestrcsetc.u . . . . . . . . . . 11 (𝜑𝑈 ∈ WUni)
17 funcestrcsetc.f . . . . . . . . . . 11 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
1812, 13, 14, 15, 16, 17funcestrcsetclem1 17382 . . . . . . . . . 10 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
1918adantrl 714 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) = (Base‘𝑌))
2012, 13, 14, 15, 16, 17funcestrcsetclem1 17382 . . . . . . . . . 10 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
2120adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) = (Base‘𝑋))
2219, 21oveq12d 7166 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑌) ↑m (𝐹𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
2322adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → ((𝐹𝑌) ↑m (𝐹𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
2411, 23eleqtrrd 2914 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋)))
2524ex 415 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋))))
264, 25syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋))))
2726ssrdv 3971 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((Base‘𝑌) ↑m (Base‘𝑋)) ⊆ ((𝐹𝑌) ↑m (𝐹𝑋)))
283, 27fssd 6521 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))⟶((𝐹𝑌) ↑m (𝐹𝑋)))
29 funcestrcsetc.g . . . 4 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
30 eqid 2819 . . . 4 (Base‘𝑋) = (Base‘𝑋)
31 eqid 2819 . . . 4 (Base‘𝑌) = (Base‘𝑌)
3212, 13, 14, 15, 16, 17, 29, 30, 31funcestrcsetclem5 17386 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))))
3316adantr 483 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑈 ∈ WUni)
34 eqid 2819 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
3512, 16estrcbas 17367 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝐸))
3635, 14syl6reqr 2873 . . . . . . . 8 (𝜑𝐵 = 𝑈)
3736eleq2d 2896 . . . . . . 7 (𝜑 → (𝑋𝐵𝑋𝑈))
3837biimpcd 251 . . . . . 6 (𝑋𝐵 → (𝜑𝑋𝑈))
3938adantr 483 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝜑𝑋𝑈))
4039impcom 410 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝑈)
4136eleq2d 2896 . . . . . . 7 (𝜑 → (𝑌𝐵𝑌𝑈))
4241biimpd 231 . . . . . 6 (𝜑 → (𝑌𝐵𝑌𝑈))
4342adantld 493 . . . . 5 (𝜑 → ((𝑋𝐵𝑌𝐵) → 𝑌𝑈))
4443imp 409 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝑈)
4512, 33, 34, 40, 44, 30, 31estrchom 17369 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(Hom ‘𝐸)𝑌) = ((Base‘𝑌) ↑m (Base‘𝑋)))
46 eqid 2819 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4712, 13, 14, 15, 16, 17funcestrcsetclem2 17383 . . . . 5 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
4847adantrr 715 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝑈)
4912, 13, 14, 15, 16, 17funcestrcsetclem2 17383 . . . . 5 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
5049adantrl 714 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝑈)
5113, 33, 46, 48, 50setchom 17332 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) = ((𝐹𝑌) ↑m (𝐹𝑋)))
5232, 45, 51feq123d 6496 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) ↔ ( I ↾ ((Base‘𝑌) ↑m (Base‘𝑋))):((Base‘𝑌) ↑m (Base‘𝑋))⟶((𝐹𝑌) ↑m (𝐹𝑋))))
5328, 52mpbird 259 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  Vcvv 3493  cmpt 5137   I cid 5452  cres 5550  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  cmpo 7150  m cmap 8398  WUnicwun 10114  Basecbs 16475  Hom chom 16568  SetCatcsetc 17327  ExtStrCatcestrc 17364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-wun 10116  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-hom 16581  df-cco 16582  df-setc 17328  df-estrc 17365
This theorem is referenced by:  funcestrcsetc  17391  fthestrcsetc  17392  fullestrcsetc  17393
  Copyright terms: Public domain W3C validator