| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcestrcsetc | Structured version Visualization version GIF version | ||
| Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 23-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
| funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
| Ref | Expression |
|---|---|
| funcestrcsetc | ⊢ (𝜑 → 𝐹(𝐸 Func 𝑆)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.b | . 2 ⊢ 𝐵 = (Base‘𝐸) | |
| 2 | funcestrcsetc.c | . 2 ⊢ 𝐶 = (Base‘𝑆) | |
| 3 | eqid 2733 | . 2 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 4 | eqid 2733 | . 2 ⊢ (Hom ‘𝑆) = (Hom ‘𝑆) | |
| 5 | eqid 2733 | . 2 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
| 6 | eqid 2733 | . 2 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
| 7 | eqid 2733 | . 2 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 8 | eqid 2733 | . 2 ⊢ (comp‘𝑆) = (comp‘𝑆) | |
| 9 | funcestrcsetc.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 10 | funcestrcsetc.e | . . . 4 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 11 | 10 | estrccat 18041 | . . 3 ⊢ (𝑈 ∈ WUni → 𝐸 ∈ Cat) |
| 12 | 9, 11 | syl 17 | . 2 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 13 | funcestrcsetc.s | . . . 4 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 14 | 13 | setccat 17994 | . . 3 ⊢ (𝑈 ∈ WUni → 𝑆 ∈ Cat) |
| 15 | 9, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ∈ Cat) |
| 16 | funcestrcsetc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
| 17 | 10, 13, 1, 2, 9, 16 | funcestrcsetclem3 18050 | . 2 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| 18 | funcestrcsetc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) | |
| 19 | 10, 13, 1, 2, 9, 16, 18 | funcestrcsetclem4 18051 | . 2 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
| 20 | 10, 13, 1, 2, 9, 16, 18 | funcestrcsetclem8 18055 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹‘𝑎)(Hom ‘𝑆)(𝐹‘𝑏))) |
| 21 | 10, 13, 1, 2, 9, 16, 18 | funcestrcsetclem7 18054 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑎𝐺𝑎)‘((Id‘𝐸)‘𝑎)) = ((Id‘𝑆)‘(𝐹‘𝑎))) |
| 22 | 10, 13, 1, 2, 9, 16, 18 | funcestrcsetclem9 18056 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (ℎ ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑏(Hom ‘𝐸)𝑐))) → ((𝑎𝐺𝑐)‘(𝑘(〈𝑎, 𝑏〉(comp‘𝐸)𝑐)ℎ)) = (((𝑏𝐺𝑐)‘𝑘)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉(comp‘𝑆)(𝐹‘𝑐))((𝑎𝐺𝑏)‘ℎ))) |
| 23 | 1, 2, 3, 4, 5, 6, 7, 8, 12, 15, 17, 19, 20, 21, 22 | isfuncd 17774 | 1 ⊢ (𝜑 → 𝐹(𝐸 Func 𝑆)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ↦ cmpt 5174 I cid 5513 ↾ cres 5621 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 ↑m cmap 8756 WUnicwun 10598 Basecbs 17122 Hom chom 17174 compcco 17175 Catccat 17572 Idccid 17573 Func cfunc 17763 SetCatcsetc 17984 ExtStrCatcestrc 18030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-wun 10600 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-hom 17187 df-cco 17188 df-cat 17576 df-cid 17577 df-func 17767 df-setc 17985 df-estrc 18031 |
| This theorem is referenced by: fthestrcsetc 18058 fullestrcsetc 18059 funcrngcsetc 20557 funcrngcsetcALT 20558 funcringcsetc 20591 |
| Copyright terms: Public domain | W3C validator |