![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvimacnvALT | Structured version Visualization version GIF version |
Description: Alternate proof of fvimacnv 6581, based on funimass3 6582. If funimass3 6582 is ever proved directly, as opposed to using funimacnv 6203 pointwise, then the proof of funimacnv 6203 should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fvimacnvALT | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4557 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → {𝐴} ⊆ dom 𝐹) | |
2 | funimass3 6582 | . . 3 ⊢ ((Fun 𝐹 ∧ {𝐴} ⊆ dom 𝐹) → ((𝐹 “ {𝐴}) ⊆ 𝐵 ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) | |
3 | 1, 2 | sylan2 588 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹 “ {𝐴}) ⊆ 𝐵 ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) |
4 | fvex 6446 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
5 | 4 | snss 4535 | . . 3 ⊢ ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵) |
6 | eqid 2825 | . . . . . 6 ⊢ dom 𝐹 = dom 𝐹 | |
7 | df-fn 6126 | . . . . . . 7 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
8 | 7 | biimpri 220 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = dom 𝐹) → 𝐹 Fn dom 𝐹) |
9 | 6, 8 | mpan2 684 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
10 | fnsnfv 6505 | . . . . 5 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
11 | 9, 10 | sylan 577 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
12 | 11 | sseq1d 3857 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ({(𝐹‘𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
13 | 5, 12 | syl5bb 275 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
14 | snssg 4534 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) | |
15 | 14 | adantl 475 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ 𝐵) ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) |
16 | 3, 13, 15 | 3bitr4d 303 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ⊆ wss 3798 {csn 4397 ◡ccnv 5341 dom cdm 5342 “ cima 5345 Fun wfun 6117 Fn wfn 6118 ‘cfv 6123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-fv 6131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |