![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvimacnvALT | Structured version Visualization version GIF version |
Description: Alternate proof of fvimacnv 7053, based on funimass3 7054. If funimass3 7054 is ever proved directly, as opposed to using funimacnv 6628 pointwise, then the proof of funimacnv 6628 should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fvimacnvALT | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4810 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → {𝐴} ⊆ dom 𝐹) | |
2 | funimass3 7054 | . . 3 ⊢ ((Fun 𝐹 ∧ {𝐴} ⊆ dom 𝐹) → ((𝐹 “ {𝐴}) ⊆ 𝐵 ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) | |
3 | 1, 2 | sylan2 591 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹 “ {𝐴}) ⊆ 𝐵 ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) |
4 | fvex 6903 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
5 | 4 | snss 4788 | . . 3 ⊢ ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵) |
6 | eqid 2730 | . . . . . 6 ⊢ dom 𝐹 = dom 𝐹 | |
7 | df-fn 6545 | . . . . . . 7 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
8 | 7 | biimpri 227 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = dom 𝐹) → 𝐹 Fn dom 𝐹) |
9 | 6, 8 | mpan2 687 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
10 | fnsnfv 6969 | . . . . 5 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
11 | 9, 10 | sylan 578 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
12 | 11 | sseq1d 4012 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ({(𝐹‘𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
13 | 5, 12 | bitrid 282 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
14 | snssg 4786 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) | |
15 | 14 | adantl 480 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ 𝐵) ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) |
16 | 3, 13, 15 | 3bitr4d 310 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 {csn 4627 ◡ccnv 5674 dom cdm 5675 “ cima 5678 Fun wfun 6536 Fn wfn 6537 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |