MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnvALT Structured version   Visualization version   GIF version

Theorem fvimacnvALT 6996
Description: Alternate proof of fvimacnv 6992, based on funimass3 6993. If funimass3 6993 is ever proved directly, as opposed to using funimacnv 6567 pointwise, then the proof of funimacnv 6567 should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fvimacnvALT ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))

Proof of Theorem fvimacnvALT
StepHypRef Expression
1 snssi 4759 . . 3 (𝐴 ∈ dom 𝐹 → {𝐴} ⊆ dom 𝐹)
2 funimass3 6993 . . 3 ((Fun 𝐹 ∧ {𝐴} ⊆ dom 𝐹) → ((𝐹 “ {𝐴}) ⊆ 𝐵 ↔ {𝐴} ⊆ (𝐹𝐵)))
31, 2sylan2 593 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹 “ {𝐴}) ⊆ 𝐵 ↔ {𝐴} ⊆ (𝐹𝐵)))
4 fvex 6841 . . . 4 (𝐹𝐴) ∈ V
54snss 4736 . . 3 ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵)
6 eqid 2733 . . . . . 6 dom 𝐹 = dom 𝐹
7 df-fn 6489 . . . . . . 7 (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹))
87biimpri 228 . . . . . 6 ((Fun 𝐹 ∧ dom 𝐹 = dom 𝐹) → 𝐹 Fn dom 𝐹)
96, 8mpan2 691 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
10 fnsnfv 6907 . . . . 5 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
119, 10sylan 580 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1211sseq1d 3962 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ({(𝐹𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵))
135, 12bitrid 283 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵))
14 snssg 4735 . . 3 (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (𝐹𝐵) ↔ {𝐴} ⊆ (𝐹𝐵)))
1514adantl 481 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝐵) ↔ {𝐴} ⊆ (𝐹𝐵)))
163, 13, 153bitr4d 311 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3898  {csn 4575  ccnv 5618  dom cdm 5619  cima 5622  Fun wfun 6480   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator