![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvimacnvALT | Structured version Visualization version GIF version |
Description: Alternate proof of fvimacnv 7055, based on funimass3 7056. If funimass3 7056 is ever proved directly, as opposed to using funimacnv 6630 pointwise, then the proof of funimacnv 6630 should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fvimacnvALT | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4812 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → {𝐴} ⊆ dom 𝐹) | |
2 | funimass3 7056 | . . 3 ⊢ ((Fun 𝐹 ∧ {𝐴} ⊆ dom 𝐹) → ((𝐹 “ {𝐴}) ⊆ 𝐵 ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) | |
3 | 1, 2 | sylan2 594 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹 “ {𝐴}) ⊆ 𝐵 ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) |
4 | fvex 6905 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
5 | 4 | snss 4790 | . . 3 ⊢ ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵) |
6 | eqid 2733 | . . . . . 6 ⊢ dom 𝐹 = dom 𝐹 | |
7 | df-fn 6547 | . . . . . . 7 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
8 | 7 | biimpri 227 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = dom 𝐹) → 𝐹 Fn dom 𝐹) |
9 | 6, 8 | mpan2 690 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
10 | fnsnfv 6971 | . . . . 5 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
11 | 9, 10 | sylan 581 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
12 | 11 | sseq1d 4014 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ({(𝐹‘𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
13 | 5, 12 | bitrid 283 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
14 | snssg 4788 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) | |
15 | 14 | adantl 483 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ 𝐵) ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) |
16 | 3, 13, 15 | 3bitr4d 311 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⊆ wss 3949 {csn 4629 ◡ccnv 5676 dom cdm 5677 “ cima 5680 Fun wfun 6538 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |