| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvimacnvALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of fvimacnv 7028, based on funimass3 7029. If funimass3 7029 is ever proved directly, as opposed to using funimacnv 6600 pointwise, then the proof of funimacnv 6600 should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| fvimacnvALT | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4775 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → {𝐴} ⊆ dom 𝐹) | |
| 2 | funimass3 7029 | . . 3 ⊢ ((Fun 𝐹 ∧ {𝐴} ⊆ dom 𝐹) → ((𝐹 “ {𝐴}) ⊆ 𝐵 ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹 “ {𝐴}) ⊆ 𝐵 ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) |
| 4 | fvex 6874 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
| 5 | 4 | snss 4752 | . . 3 ⊢ ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵) |
| 6 | eqid 2730 | . . . . . 6 ⊢ dom 𝐹 = dom 𝐹 | |
| 7 | df-fn 6517 | . . . . . . 7 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
| 8 | 7 | biimpri 228 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = dom 𝐹) → 𝐹 Fn dom 𝐹) |
| 9 | 6, 8 | mpan2 691 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
| 10 | fnsnfv 6943 | . . . . 5 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
| 11 | 9, 10 | sylan 580 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
| 12 | 11 | sseq1d 3981 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ({(𝐹‘𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
| 13 | 5, 12 | bitrid 283 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
| 14 | snssg 4750 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) | |
| 15 | 14 | adantl 481 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ 𝐵) ↔ {𝐴} ⊆ (◡𝐹 “ 𝐵))) |
| 16 | 3, 13, 15 | 3bitr4d 311 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 {csn 4592 ◡ccnv 5640 dom cdm 5641 “ cima 5644 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |