MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnvALT Structured version   Visualization version   GIF version

Theorem fvimacnvALT 7076
Description: Alternate proof of fvimacnv 7072, based on funimass3 7073. If funimass3 7073 is ever proved directly, as opposed to using funimacnv 6648 pointwise, then the proof of funimacnv 6648 should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fvimacnvALT ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))

Proof of Theorem fvimacnvALT
StepHypRef Expression
1 snssi 4812 . . 3 (𝐴 ∈ dom 𝐹 → {𝐴} ⊆ dom 𝐹)
2 funimass3 7073 . . 3 ((Fun 𝐹 ∧ {𝐴} ⊆ dom 𝐹) → ((𝐹 “ {𝐴}) ⊆ 𝐵 ↔ {𝐴} ⊆ (𝐹𝐵)))
31, 2sylan2 593 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹 “ {𝐴}) ⊆ 𝐵 ↔ {𝐴} ⊆ (𝐹𝐵)))
4 fvex 6919 . . . 4 (𝐹𝐴) ∈ V
54snss 4789 . . 3 ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵)
6 eqid 2734 . . . . . 6 dom 𝐹 = dom 𝐹
7 df-fn 6565 . . . . . . 7 (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹))
87biimpri 228 . . . . . 6 ((Fun 𝐹 ∧ dom 𝐹 = dom 𝐹) → 𝐹 Fn dom 𝐹)
96, 8mpan2 691 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
10 fnsnfv 6987 . . . . 5 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
119, 10sylan 580 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1211sseq1d 4026 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ({(𝐹𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵))
135, 12bitrid 283 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵))
14 snssg 4787 . . 3 (𝐴 ∈ dom 𝐹 → (𝐴 ∈ (𝐹𝐵) ↔ {𝐴} ⊆ (𝐹𝐵)))
1514adantl 481 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝐵) ↔ {𝐴} ⊆ (𝐹𝐵)))
163, 13, 153bitr4d 311 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wss 3962  {csn 4630  ccnv 5687  dom cdm 5688  cima 5691  Fun wfun 6556   Fn wfn 6557  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-fv 6570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator