Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvconstr | Structured version Visualization version GIF version |
Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.) |
Ref | Expression |
---|---|
fvconstr.1 | ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) |
fvconstr.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
fvconstr.3 | ⊢ (𝜑 → 𝑌 ≠ ∅) |
Ref | Expression |
---|---|
fvconstr | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5075 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | fvconstr.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) | |
3 | 2 | oveqd 7292 | . . . . . 6 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵)) |
4 | df-ov 7278 | . . . . . 6 ⊢ (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) | |
5 | 3, 4 | eqtrdi 2794 | . . . . 5 ⊢ (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉)) |
6 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉)) |
7 | fvconstr.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
8 | fvconst2g 7077 | . . . . 5 ⊢ ((𝑌 ∈ 𝑉 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) = 𝑌) | |
9 | 7, 8 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) = 𝑌) |
10 | 6, 9 | eqtrd 2778 | . . 3 ⊢ ((𝜑 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → (𝐴𝐹𝐵) = 𝑌) |
11 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → (𝐴𝐹𝐵) = 𝑌) | |
12 | fvconstr.3 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ≠ ∅) | |
13 | 12 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → 𝑌 ≠ ∅) |
14 | 11, 13 | eqnetrd 3011 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → (𝐴𝐹𝐵) ≠ ∅) |
15 | 5 | neeq1d 3003 | . . . . . 6 ⊢ (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅)) |
16 | 15 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅)) |
17 | 14, 16 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅) |
18 | dmxpss 6074 | . . . . 5 ⊢ dom (𝑅 × {𝑌}) ⊆ 𝑅 | |
19 | ndmfv 6804 | . . . . . 6 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) = ∅) | |
20 | 19 | necon1ai 2971 | . . . . 5 ⊢ (((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ dom (𝑅 × {𝑌})) |
21 | 18, 20 | sselid 3919 | . . . 4 ⊢ (((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ 𝑅) |
22 | 17, 21 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → 〈𝐴, 𝐵〉 ∈ 𝑅) |
23 | 10, 22 | impbida 798 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ (𝐴𝐹𝐵) = 𝑌)) |
24 | 1, 23 | syl5bb 283 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 {csn 4561 〈cop 4567 class class class wbr 5074 × cxp 5587 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 |
This theorem is referenced by: prsthinc 46335 prstchom2ALT 46360 |
Copyright terms: Public domain | W3C validator |