Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvconstr Structured version   Visualization version   GIF version

Theorem fvconstr 47986
Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
fvconstr.1 (𝜑𝐹 = (𝑅 × {𝑌}))
fvconstr.2 (𝜑𝑌𝑉)
fvconstr.3 (𝜑𝑌 ≠ ∅)
Assertion
Ref Expression
fvconstr (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) = 𝑌))

Proof of Theorem fvconstr
StepHypRef Expression
1 df-br 5153 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 fvconstr.1 . . . . . . 7 (𝜑𝐹 = (𝑅 × {𝑌}))
32oveqd 7443 . . . . . 6 (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵))
4 df-ov 7429 . . . . . 6 (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩)
53, 4eqtrdi 2784 . . . . 5 (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩))
65adantr 479 . . . 4 ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩))
7 fvconstr.2 . . . . 5 (𝜑𝑌𝑉)
8 fvconst2g 7220 . . . . 5 ((𝑌𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = 𝑌)
97, 8sylan 578 . . . 4 ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = 𝑌)
106, 9eqtrd 2768 . . 3 ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴𝐹𝐵) = 𝑌)
11 simpr 483 . . . . . 6 ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → (𝐴𝐹𝐵) = 𝑌)
12 fvconstr.3 . . . . . . 7 (𝜑𝑌 ≠ ∅)
1312adantr 479 . . . . . 6 ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → 𝑌 ≠ ∅)
1411, 13eqnetrd 3005 . . . . 5 ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → (𝐴𝐹𝐵) ≠ ∅)
155neeq1d 2997 . . . . . 6 (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅))
1615adantr 479 . . . . 5 ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅))
1714, 16mpbid 231 . . . 4 ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅)
18 dmxpss 6180 . . . . 5 dom (𝑅 × {𝑌}) ⊆ 𝑅
19 ndmfv 6937 . . . . . 6 (¬ ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = ∅)
2019necon1ai 2965 . . . . 5 (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}))
2118, 20sselid 3980 . . . 4 (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2217, 21syl 17 . . 3 ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2310, 22impbida 799 . 2 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ (𝐴𝐹𝐵) = 𝑌))
241, 23bitrid 282 1 (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2937  c0 4326  {csn 4632  cop 4638   class class class wbr 5152   × cxp 5680  dom cdm 5682  cfv 6553  (class class class)co 7426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429
This theorem is referenced by:  prsthinc  48138  prstchom2ALT  48163
  Copyright terms: Public domain W3C validator