| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvconstr | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| fvconstr.1 | ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) |
| fvconstr.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| fvconstr.3 | ⊢ (𝜑 → 𝑌 ≠ ∅) |
| Ref | Expression |
|---|---|
| fvconstr | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5143 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | fvconstr.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) | |
| 3 | 2 | oveqd 7449 | . . . . . 6 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵)) |
| 4 | df-ov 7435 | . . . . . 6 ⊢ (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) | |
| 5 | 3, 4 | eqtrdi 2792 | . . . . 5 ⊢ (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉)) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉)) |
| 7 | fvconstr.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 8 | fvconst2g 7223 | . . . . 5 ⊢ ((𝑌 ∈ 𝑉 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) = 𝑌) | |
| 9 | 7, 8 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) = 𝑌) |
| 10 | 6, 9 | eqtrd 2776 | . . 3 ⊢ ((𝜑 ∧ 〈𝐴, 𝐵〉 ∈ 𝑅) → (𝐴𝐹𝐵) = 𝑌) |
| 11 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → (𝐴𝐹𝐵) = 𝑌) | |
| 12 | fvconstr.3 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ≠ ∅) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → 𝑌 ≠ ∅) |
| 14 | 11, 13 | eqnetrd 3007 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → (𝐴𝐹𝐵) ≠ ∅) |
| 15 | 5 | neeq1d 2999 | . . . . . 6 ⊢ (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅)) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅)) |
| 17 | 14, 16 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅) |
| 18 | dmxpss 6190 | . . . . 5 ⊢ dom (𝑅 × {𝑌}) ⊆ 𝑅 | |
| 19 | ndmfv 6940 | . . . . . 6 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) = ∅) | |
| 20 | 19 | necon1ai 2967 | . . . . 5 ⊢ (((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ dom (𝑅 × {𝑌})) |
| 21 | 18, 20 | sselid 3980 | . . . 4 ⊢ (((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ 𝑅) |
| 22 | 17, 21 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) = 𝑌) → 〈𝐴, 𝐵〉 ∈ 𝑅) |
| 23 | 10, 22 | impbida 800 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ (𝐴𝐹𝐵) = 𝑌)) |
| 24 | 1, 23 | bitrid 283 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∅c0 4332 {csn 4625 〈cop 4631 class class class wbr 5142 × cxp 5682 dom cdm 5684 ‘cfv 6560 (class class class)co 7432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 |
| This theorem is referenced by: prsthinc 49136 prstchom2ALT 49216 |
| Copyright terms: Public domain | W3C validator |