Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prstchom2ALT Structured version   Visualization version   GIF version

Theorem prstchom2ALT 46360
Description: Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc 46344. See prstchom2 46359 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
prstchom.l (𝜑 = (le‘𝐶))
prstchom.e (𝜑𝐻 = (Hom ‘𝐶))
Assertion
Ref Expression
prstchom2ALT (𝜑 → (𝑋 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
Distinct variable groups:   𝐶,𝑓   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓
Allowed substitution hints:   𝐾(𝑓)   (𝑓)

Proof of Theorem prstchom2ALT
StepHypRef Expression
1 ovex 7308 . . . 4 (𝑋𝐻𝑌) ∈ V
2 prstchom.e . . . . . . 7 (𝜑𝐻 = (Hom ‘𝐶))
3 prstcnid.c . . . . . . . 8 (𝜑𝐶 = (ProsetToCat‘𝐾))
4 prstcnid.k . . . . . . . 8 (𝜑𝐾 ∈ Proset )
5 prstchom.l . . . . . . . 8 (𝜑 = (le‘𝐶))
63, 4, 5prstchomval 46355 . . . . . . 7 (𝜑 → ( × {1o}) = (Hom ‘𝐶))
72, 6eqtr4d 2781 . . . . . 6 (𝜑𝐻 = ( × {1o}))
8 1oex 8307 . . . . . . 7 1o ∈ V
98a1i 11 . . . . . 6 (𝜑 → 1o ∈ V)
10 1n0 8318 . . . . . . 7 1o ≠ ∅
1110a1i 11 . . . . . 6 (𝜑 → 1o ≠ ∅)
127, 9, 11fvconstr 46183 . . . . 5 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) = 1o))
1312biimpa 477 . . . 4 ((𝜑𝑋 𝑌) → (𝑋𝐻𝑌) = 1o)
14 eqeng 8774 . . . 4 ((𝑋𝐻𝑌) ∈ V → ((𝑋𝐻𝑌) = 1o → (𝑋𝐻𝑌) ≈ 1o))
151, 13, 14mpsyl 68 . . 3 ((𝜑𝑋 𝑌) → (𝑋𝐻𝑌) ≈ 1o)
16 euen1b 8817 . . 3 ((𝑋𝐻𝑌) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))
1715, 16sylib 217 . 2 ((𝜑𝑋 𝑌) → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))
18 euex 2577 . . . 4 (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
19 n0 4280 . . . 4 ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
2018, 19sylibr 233 . . 3 (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ≠ ∅)
217, 9, 11fvconstrn0 46184 . . . 4 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
2221biimpar 478 . . 3 ((𝜑 ∧ (𝑋𝐻𝑌) ≠ ∅) → 𝑋 𝑌)
2320, 22sylan2 593 . 2 ((𝜑 ∧ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋 𝑌)
2417, 23impbida 798 1 (𝜑 → (𝑋 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568  wne 2943  Vcvv 3432  c0 4256  {csn 4561   class class class wbr 5074   × cxp 5587  cfv 6433  (class class class)co 7275  1oc1o 8290  cen 8730  lecple 16969  Hom chom 16973   Proset cproset 18011  ProsetToCatcprstc 46343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ple 16982  df-hom 16986  df-cco 16987  df-prstc 46344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator