| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prstchom2ALT | Structured version Visualization version GIF version | ||
| Description: Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc 49512. See prstchom2 49525 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
| prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
| prstchom.l | ⊢ (𝜑 → ≤ = (le‘𝐶)) |
| prstchom.e | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
| Ref | Expression |
|---|---|
| prstchom2ALT | ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7402 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
| 2 | prstchom.e | . . . . . . 7 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
| 3 | prstcnid.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
| 4 | prstcnid.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
| 5 | prstchom.l | . . . . . . . 8 ⊢ (𝜑 → ≤ = (le‘𝐶)) | |
| 6 | 3, 4, 5 | prstchomval 49521 | . . . . . . 7 ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) |
| 7 | 2, 6 | eqtr4d 2767 | . . . . . 6 ⊢ (𝜑 → 𝐻 = ( ≤ × {1o})) |
| 8 | 1oex 8421 | . . . . . . 7 ⊢ 1o ∈ V | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1o ∈ V) |
| 10 | 1n0 8429 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1o ≠ ∅) |
| 12 | 7, 9, 11 | fvconstr 48823 | . . . . 5 ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋𝐻𝑌) = 1o)) |
| 13 | 12 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≤ 𝑌) → (𝑋𝐻𝑌) = 1o) |
| 14 | eqeng 8934 | . . . 4 ⊢ ((𝑋𝐻𝑌) ∈ V → ((𝑋𝐻𝑌) = 1o → (𝑋𝐻𝑌) ≈ 1o)) | |
| 15 | 1, 13, 14 | mpsyl 68 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≤ 𝑌) → (𝑋𝐻𝑌) ≈ 1o) |
| 16 | euen1b 8976 | . . 3 ⊢ ((𝑋𝐻𝑌) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 17 | 15, 16 | sylib 218 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≤ 𝑌) → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
| 18 | euex 2570 | . . . 4 ⊢ (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 19 | n0 4312 | . . . 4 ⊢ ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 20 | 18, 19 | sylibr 234 | . . 3 ⊢ (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ≠ ∅) |
| 21 | 7, 9, 11 | fvconstrn0 48824 | . . . 4 ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)) |
| 22 | 21 | biimpar 477 | . . 3 ⊢ ((𝜑 ∧ (𝑋𝐻𝑌) ≠ ∅) → 𝑋 ≤ 𝑌) |
| 23 | 20, 22 | sylan2 593 | . 2 ⊢ ((𝜑 ∧ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋 ≤ 𝑌) |
| 24 | 17, 23 | impbida 800 | 1 ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 ≠ wne 2925 Vcvv 3444 ∅c0 4292 {csn 4585 class class class wbr 5102 × cxp 5629 ‘cfv 6499 (class class class)co 7369 1oc1o 8404 ≈ cen 8892 lecple 17203 Hom chom 17207 Proset cproset 18229 ProsetToCatcprstc 49511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ple 17216 df-hom 17220 df-cco 17221 df-prstc 49512 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |