Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prstchom2ALT Structured version   Visualization version   GIF version

Theorem prstchom2ALT 49408
Description: Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc 49394. See prstchom2 49407 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
prstchom.l (𝜑 = (le‘𝐶))
prstchom.e (𝜑𝐻 = (Hom ‘𝐶))
Assertion
Ref Expression
prstchom2ALT (𝜑 → (𝑋 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
Distinct variable groups:   𝐶,𝑓   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓
Allowed substitution hints:   𝐾(𝑓)   (𝑓)

Proof of Theorem prstchom2ALT
StepHypRef Expression
1 ovex 7443 . . . 4 (𝑋𝐻𝑌) ∈ V
2 prstchom.e . . . . . . 7 (𝜑𝐻 = (Hom ‘𝐶))
3 prstcnid.c . . . . . . . 8 (𝜑𝐶 = (ProsetToCat‘𝐾))
4 prstcnid.k . . . . . . . 8 (𝜑𝐾 ∈ Proset )
5 prstchom.l . . . . . . . 8 (𝜑 = (le‘𝐶))
63, 4, 5prstchomval 49403 . . . . . . 7 (𝜑 → ( × {1o}) = (Hom ‘𝐶))
72, 6eqtr4d 2774 . . . . . 6 (𝜑𝐻 = ( × {1o}))
8 1oex 8495 . . . . . . 7 1o ∈ V
98a1i 11 . . . . . 6 (𝜑 → 1o ∈ V)
10 1n0 8505 . . . . . . 7 1o ≠ ∅
1110a1i 11 . . . . . 6 (𝜑 → 1o ≠ ∅)
127, 9, 11fvconstr 48805 . . . . 5 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) = 1o))
1312biimpa 476 . . . 4 ((𝜑𝑋 𝑌) → (𝑋𝐻𝑌) = 1o)
14 eqeng 9005 . . . 4 ((𝑋𝐻𝑌) ∈ V → ((𝑋𝐻𝑌) = 1o → (𝑋𝐻𝑌) ≈ 1o))
151, 13, 14mpsyl 68 . . 3 ((𝜑𝑋 𝑌) → (𝑋𝐻𝑌) ≈ 1o)
16 euen1b 9047 . . 3 ((𝑋𝐻𝑌) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))
1715, 16sylib 218 . 2 ((𝜑𝑋 𝑌) → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))
18 euex 2577 . . . 4 (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
19 n0 4333 . . . 4 ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
2018, 19sylibr 234 . . 3 (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ≠ ∅)
217, 9, 11fvconstrn0 48806 . . . 4 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
2221biimpar 477 . . 3 ((𝜑 ∧ (𝑋𝐻𝑌) ≠ ∅) → 𝑋 𝑌)
2320, 22sylan2 593 . 2 ((𝜑 ∧ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋 𝑌)
2417, 23impbida 800 1 (𝜑 → (𝑋 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2568  wne 2933  Vcvv 3464  c0 4313  {csn 4606   class class class wbr 5124   × cxp 5657  cfv 6536  (class class class)co 7410  1oc1o 8478  cen 8961  lecple 17283  Hom chom 17287   Proset cproset 18309  ProsetToCatcprstc 49393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ple 17296  df-hom 17300  df-cco 17301  df-prstc 49394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator