| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prstchom2ALT | Structured version Visualization version GIF version | ||
| Description: Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc 49582. See prstchom2 49595 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
| prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
| prstchom.l | ⊢ (𝜑 → ≤ = (le‘𝐶)) |
| prstchom.e | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
| Ref | Expression |
|---|---|
| prstchom2ALT | ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7374 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
| 2 | prstchom.e | . . . . . . 7 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
| 3 | prstcnid.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
| 4 | prstcnid.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
| 5 | prstchom.l | . . . . . . . 8 ⊢ (𝜑 → ≤ = (le‘𝐶)) | |
| 6 | 3, 4, 5 | prstchomval 49591 | . . . . . . 7 ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) |
| 7 | 2, 6 | eqtr4d 2769 | . . . . . 6 ⊢ (𝜑 → 𝐻 = ( ≤ × {1o})) |
| 8 | 1oex 8390 | . . . . . . 7 ⊢ 1o ∈ V | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1o ∈ V) |
| 10 | 1n0 8398 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 1o ≠ ∅) |
| 12 | 7, 9, 11 | fvconstr 48893 | . . . . 5 ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋𝐻𝑌) = 1o)) |
| 13 | 12 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≤ 𝑌) → (𝑋𝐻𝑌) = 1o) |
| 14 | eqeng 8903 | . . . 4 ⊢ ((𝑋𝐻𝑌) ∈ V → ((𝑋𝐻𝑌) = 1o → (𝑋𝐻𝑌) ≈ 1o)) | |
| 15 | 1, 13, 14 | mpsyl 68 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≤ 𝑌) → (𝑋𝐻𝑌) ≈ 1o) |
| 16 | euen1b 8945 | . . 3 ⊢ ((𝑋𝐻𝑌) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 17 | 15, 16 | sylib 218 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≤ 𝑌) → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
| 18 | euex 2572 | . . . 4 ⊢ (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 19 | n0 4298 | . . . 4 ⊢ ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 20 | 18, 19 | sylibr 234 | . . 3 ⊢ (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ≠ ∅) |
| 21 | 7, 9, 11 | fvconstrn0 48894 | . . . 4 ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅)) |
| 22 | 21 | biimpar 477 | . . 3 ⊢ ((𝜑 ∧ (𝑋𝐻𝑌) ≠ ∅) → 𝑋 ≤ 𝑌) |
| 23 | 20, 22 | sylan2 593 | . 2 ⊢ ((𝜑 ∧ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋 ≤ 𝑌) |
| 24 | 17, 23 | impbida 800 | 1 ⊢ (𝜑 → (𝑋 ≤ 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃!weu 2563 ≠ wne 2928 Vcvv 3436 ∅c0 4278 {csn 4571 class class class wbr 5086 × cxp 5609 ‘cfv 6476 (class class class)co 7341 1oc1o 8373 ≈ cen 8861 lecple 17163 Hom chom 17167 Proset cproset 18193 ProsetToCatcprstc 49581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ple 17176 df-hom 17180 df-cco 17181 df-prstc 49582 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |