Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prstchom2ALT Structured version   Visualization version   GIF version

Theorem prstchom2ALT 45864
Description: Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc 45850. See prstchom2 45863 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
prstcnid.c (𝜑𝐶 = (ProsetToCat‘𝐾))
prstcnid.k (𝜑𝐾 ∈ Proset )
prstchom.l (𝜑 = (le‘𝐶))
prstchom.e (𝜑𝐻 = (Hom ‘𝐶))
Assertion
Ref Expression
prstchom2ALT (𝜑 → (𝑋 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
Distinct variable groups:   𝐶,𝑓   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓
Allowed substitution hints:   𝐾(𝑓)   (𝑓)

Proof of Theorem prstchom2ALT
StepHypRef Expression
1 ovex 7215 . . . 4 (𝑋𝐻𝑌) ∈ V
2 prstchom.e . . . . . . 7 (𝜑𝐻 = (Hom ‘𝐶))
3 prstcnid.c . . . . . . . 8 (𝜑𝐶 = (ProsetToCat‘𝐾))
4 prstcnid.k . . . . . . . 8 (𝜑𝐾 ∈ Proset )
5 prstchom.l . . . . . . . 8 (𝜑 = (le‘𝐶))
63, 4, 5prstchomval 45859 . . . . . . 7 (𝜑 → ( × {1o}) = (Hom ‘𝐶))
72, 6eqtr4d 2777 . . . . . 6 (𝜑𝐻 = ( × {1o}))
8 1oex 8156 . . . . . . 7 1o ∈ V
98a1i 11 . . . . . 6 (𝜑 → 1o ∈ V)
10 1n0 8162 . . . . . . 7 1o ≠ ∅
1110a1i 11 . . . . . 6 (𝜑 → 1o ≠ ∅)
127, 9, 11fvconstr 45753 . . . . 5 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) = 1o))
1312biimpa 480 . . . 4 ((𝜑𝑋 𝑌) → (𝑋𝐻𝑌) = 1o)
14 eqeng 8601 . . . 4 ((𝑋𝐻𝑌) ∈ V → ((𝑋𝐻𝑌) = 1o → (𝑋𝐻𝑌) ≈ 1o))
151, 13, 14mpsyl 68 . . 3 ((𝜑𝑋 𝑌) → (𝑋𝐻𝑌) ≈ 1o)
16 euen1b 8639 . . 3 ((𝑋𝐻𝑌) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))
1715, 16sylib 221 . 2 ((𝜑𝑋 𝑌) → ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))
18 euex 2579 . . . 4 (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
19 n0 4245 . . . 4 ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
2018, 19sylibr 237 . . 3 (∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ≠ ∅)
217, 9, 11fvconstrn0 45754 . . . 4 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
2221biimpar 481 . . 3 ((𝜑 ∧ (𝑋𝐻𝑌) ≠ ∅) → 𝑋 𝑌)
2320, 22sylan2 596 . 2 ((𝜑 ∧ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋 𝑌)
2417, 23impbida 801 1 (𝜑 → (𝑋 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wex 1786  wcel 2114  ∃!weu 2570  wne 2935  Vcvv 3400  c0 4221  {csn 4526   class class class wbr 5040   × cxp 5533  cfv 6349  (class class class)co 7182  1oc1o 8136  cen 8564  lecple 16687  Hom chom 16691   Proset cproset 17664  ProsetToCatcprstc 45849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-9 11798  df-n0 11989  df-z 12075  df-dec 12192  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-ple 16700  df-hom 16704  df-cco 16705  df-prstc 45850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator