| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvconst2g | Structured version Visualization version GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
| Ref | Expression |
|---|---|
| fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6750 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | fvconst 7139 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 × cxp 5639 ⟶wf 6510 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 |
| This theorem is referenced by: fconst2g 7180 fvconst2 7181 ofc1 7684 ofc2 7685 caofid0l 7689 caofid0r 7690 caofid1 7691 caofid2 7692 fnsuppres 8173 ser0 14026 ser1const 14030 exp1 14039 expp1 14040 climconst2 15521 climaddc1 15608 climmulc2 15610 climsubc1 15611 climsubc2 15612 climlec2 15632 fsumconst 15763 supcvg 15829 prodf1 15864 prod0 15916 fprodconst 15951 seq1st 16548 algr0 16549 algrf 16550 ramz 17003 pwsbas 17457 pwsplusgval 17460 pwsmulrval 17461 pwsle 17462 pwsvscafval 17464 pwspjmhm 18764 pwsco1mhm 18766 pwsinvg 18992 mulgnngsum 19018 mulg1 19020 mulgnnp1 19021 mulgnnsubcl 19025 mulgnn0z 19040 mulgnndir 19042 mulgnn0di 19762 gsumconst 19871 pwslmod 20883 frlmvscaval 21684 psrlidm 21878 psrascl 21895 coe1tm 22166 coe1fzgsumd 22198 evl1scad 22229 evls1scafv 22260 decpmatid 22664 pmatcollpwscmatlem1 22683 lmconst 23155 cnconst2 23177 xkoptsub 23548 xkopt 23549 xkopjcn 23550 tmdgsum 23989 tmdgsum2 23990 symgtgp 24000 cstucnd 24178 pcoptcl 24928 pcopt 24929 pcopt2 24930 dvidlem 25823 dvconst 25825 dvnff 25832 dvn0 25833 dvcmul 25854 dvcmulf 25855 fta1blem 26083 plyeq0lem 26122 coemulc 26167 dgreq0 26178 dgrmulc 26184 qaa 26238 dchrisumlema 27406 exps1 28321 expsp1 28322 suppovss 32611 fdifsuppconst 32619 ofcc 34103 ofcof 34104 sseqf 34390 sseqp1 34393 lpadleft 34681 cvmlift3lem9 35321 ismrer1 37839 frlmvscadiccat 42501 evlsscaval 42559 fsuppssind 42588 ofoafo 43352 ofoaid1 43354 ofoaid2 43355 naddcnffo 43360 naddcnfid1 43363 dvsinax 45918 stoweidlem21 46026 stoweidlem47 46052 elaa2 46239 zlmodzxzscm 48349 2sphere0 48743 fvconstr 48854 fvconstrn0 48855 |
| Copyright terms: Public domain | W3C validator |