| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvconst2g | Structured version Visualization version GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
| Ref | Expression |
|---|---|
| fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6747 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | fvconst 7136 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 × cxp 5636 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: fconst2g 7177 fvconst2 7178 ofc1 7681 ofc2 7682 caofid0l 7686 caofid0r 7687 caofid1 7688 caofid2 7689 fnsuppres 8170 ser0 14019 ser1const 14023 exp1 14032 expp1 14033 climconst2 15514 climaddc1 15601 climmulc2 15603 climsubc1 15604 climsubc2 15605 climlec2 15625 fsumconst 15756 supcvg 15822 prodf1 15857 prod0 15909 fprodconst 15944 seq1st 16541 algr0 16542 algrf 16543 ramz 16996 pwsbas 17450 pwsplusgval 17453 pwsmulrval 17454 pwsle 17455 pwsvscafval 17457 pwspjmhm 18757 pwsco1mhm 18759 pwsinvg 18985 mulgnngsum 19011 mulg1 19013 mulgnnp1 19014 mulgnnsubcl 19018 mulgnn0z 19033 mulgnndir 19035 mulgnn0di 19755 gsumconst 19864 pwslmod 20876 frlmvscaval 21677 psrlidm 21871 psrascl 21888 coe1tm 22159 coe1fzgsumd 22191 evl1scad 22222 evls1scafv 22253 decpmatid 22657 pmatcollpwscmatlem1 22676 lmconst 23148 cnconst2 23170 xkoptsub 23541 xkopt 23542 xkopjcn 23543 tmdgsum 23982 tmdgsum2 23983 symgtgp 23993 cstucnd 24171 pcoptcl 24921 pcopt 24922 pcopt2 24923 dvidlem 25816 dvconst 25818 dvnff 25825 dvn0 25826 dvcmul 25847 dvcmulf 25848 fta1blem 26076 plyeq0lem 26115 coemulc 26160 dgreq0 26171 dgrmulc 26177 qaa 26231 dchrisumlema 27399 exps1 28314 expsp1 28315 suppovss 32604 fdifsuppconst 32612 ofcc 34096 ofcof 34097 sseqf 34383 sseqp1 34386 lpadleft 34674 cvmlift3lem9 35314 ismrer1 37832 frlmvscadiccat 42494 evlsscaval 42552 fsuppssind 42581 ofoafo 43345 ofoaid1 43347 ofoaid2 43348 naddcnffo 43353 naddcnfid1 43356 dvsinax 45911 stoweidlem21 46019 stoweidlem47 46045 elaa2 46232 zlmodzxzscm 48345 2sphere0 48739 fvconstr 48850 fvconstrn0 48851 |
| Copyright terms: Public domain | W3C validator |