| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvconst2g | Structured version Visualization version GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
| Ref | Expression |
|---|---|
| fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6775 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | fvconst 7164 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4606 × cxp 5663 ⟶wf 6537 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 |
| This theorem is referenced by: fconst2g 7205 fvconst2 7206 ofc1 7707 ofc2 7708 caofid0l 7712 caofid0r 7713 caofid1 7714 caofid2 7715 fnsuppres 8198 ser0 14077 ser1const 14081 exp1 14090 expp1 14091 climconst2 15566 climaddc1 15653 climmulc2 15655 climsubc1 15656 climsubc2 15657 climlec2 15677 fsumconst 15808 supcvg 15874 prodf1 15909 prod0 15961 fprodconst 15996 seq1st 16590 algr0 16591 algrf 16592 ramz 17045 pwsbas 17503 pwsplusgval 17506 pwsmulrval 17507 pwsle 17508 pwsvscafval 17510 pwspjmhm 18812 pwsco1mhm 18814 pwsinvg 19040 mulgnngsum 19066 mulg1 19068 mulgnnp1 19069 mulgnnsubcl 19073 mulgnn0z 19088 mulgnndir 19090 mulgnn0di 19811 gsumconst 19920 pwslmod 20936 frlmvscaval 21742 psrlidm 21936 psrascl 21953 coe1tm 22224 coe1fzgsumd 22256 evl1scad 22287 evls1scafv 22318 decpmatid 22724 pmatcollpwscmatlem1 22743 lmconst 23215 cnconst2 23237 xkoptsub 23608 xkopt 23609 xkopjcn 23610 tmdgsum 24049 tmdgsum2 24050 symgtgp 24060 cstucnd 24238 pcoptcl 24990 pcopt 24991 pcopt2 24992 dvidlem 25886 dvconst 25888 dvnff 25895 dvn0 25896 dvcmul 25917 dvcmulf 25918 fta1blem 26146 plyeq0lem 26185 coemulc 26230 dgreq0 26241 dgrmulc 26247 qaa 26301 dchrisumlema 27468 exps1 28347 expsp1 28348 suppovss 32625 fdifsuppconst 32633 ofcc 34066 ofcof 34067 sseqf 34353 sseqp1 34356 lpadleft 34657 cvmlift3lem9 35291 ismrer1 37804 frlmvscadiccat 42479 evlsscaval 42537 fsuppssind 42566 ofoafo 43331 ofoaid1 43333 ofoaid2 43334 naddcnffo 43339 naddcnfid1 43342 dvsinax 45885 stoweidlem21 45993 stoweidlem47 46019 elaa2 46206 zlmodzxzscm 48231 2sphere0 48629 fvconstr 48723 fvconstrn0 48724 |
| Copyright terms: Public domain | W3C validator |