| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvconst2g | Structured version Visualization version GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
| Ref | Expression |
|---|---|
| fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6710 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | fvconst 7096 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4576 × cxp 5614 ⟶wf 6477 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: fconst2g 7137 fvconst2 7138 ofc1 7638 ofc2 7639 caofid0l 7643 caofid0r 7644 caofid1 7645 caofid2 7646 fnsuppres 8121 ser0 13958 ser1const 13962 exp1 13971 expp1 13972 climconst2 15452 climaddc1 15539 climmulc2 15541 climsubc1 15542 climsubc2 15543 climlec2 15563 fsumconst 15694 supcvg 15760 prodf1 15795 prod0 15847 fprodconst 15882 seq1st 16479 algr0 16480 algrf 16481 ramz 16934 pwsbas 17388 pwsplusgval 17391 pwsmulrval 17392 pwsle 17393 pwsvscafval 17395 pwspjmhm 18735 pwsco1mhm 18737 pwsinvg 18963 mulgnngsum 18989 mulg1 18991 mulgnnp1 18992 mulgnnsubcl 18996 mulgnn0z 19011 mulgnndir 19013 mulgnn0di 19735 gsumconst 19844 pwslmod 20901 frlmvscaval 21703 psrlidm 21897 psrascl 21914 coe1tm 22185 coe1fzgsumd 22217 evl1scad 22248 evls1scafv 22279 decpmatid 22683 pmatcollpwscmatlem1 22702 lmconst 23174 cnconst2 23196 xkoptsub 23567 xkopt 23568 xkopjcn 23569 tmdgsum 24008 tmdgsum2 24009 symgtgp 24019 cstucnd 24196 pcoptcl 24946 pcopt 24947 pcopt2 24948 dvidlem 25841 dvconst 25843 dvnff 25850 dvn0 25851 dvcmul 25872 dvcmulf 25873 fta1blem 26101 plyeq0lem 26140 coemulc 26185 dgreq0 26196 dgrmulc 26202 qaa 26256 dchrisumlema 27424 exps1 28349 expsp1 28350 constcof 32599 suppovss 32657 fdifsuppconst 32665 ofcc 34114 ofcof 34115 sseqf 34400 sseqp1 34403 lpadleft 34691 cvmlift3lem9 35359 ismrer1 37877 frlmvscadiccat 42538 evlsscaval 42596 fsuppssind 42625 ofoafo 43388 ofoaid1 43390 ofoaid2 43391 naddcnffo 43396 naddcnfid1 43399 dvsinax 45950 stoweidlem21 46058 stoweidlem47 46084 elaa2 46271 zlmodzxzscm 48387 2sphere0 48781 fvconstr 48892 fvconstrn0 48893 |
| Copyright terms: Public domain | W3C validator |