| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvconst2g | Structured version Visualization version GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
| Ref | Expression |
|---|---|
| fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6715 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | fvconst 7102 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4579 × cxp 5621 ⟶wf 6482 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: fconst2g 7143 fvconst2 7144 ofc1 7645 ofc2 7646 caofid0l 7650 caofid0r 7651 caofid1 7652 caofid2 7653 fnsuppres 8131 ser0 13979 ser1const 13983 exp1 13992 expp1 13993 climconst2 15473 climaddc1 15560 climmulc2 15562 climsubc1 15563 climsubc2 15564 climlec2 15584 fsumconst 15715 supcvg 15781 prodf1 15816 prod0 15868 fprodconst 15903 seq1st 16500 algr0 16501 algrf 16502 ramz 16955 pwsbas 17409 pwsplusgval 17412 pwsmulrval 17413 pwsle 17414 pwsvscafval 17416 pwspjmhm 18722 pwsco1mhm 18724 pwsinvg 18950 mulgnngsum 18976 mulg1 18978 mulgnnp1 18979 mulgnnsubcl 18983 mulgnn0z 18998 mulgnndir 19000 mulgnn0di 19722 gsumconst 19831 pwslmod 20891 frlmvscaval 21693 psrlidm 21887 psrascl 21904 coe1tm 22175 coe1fzgsumd 22207 evl1scad 22238 evls1scafv 22269 decpmatid 22673 pmatcollpwscmatlem1 22692 lmconst 23164 cnconst2 23186 xkoptsub 23557 xkopt 23558 xkopjcn 23559 tmdgsum 23998 tmdgsum2 23999 symgtgp 24009 cstucnd 24187 pcoptcl 24937 pcopt 24938 pcopt2 24939 dvidlem 25832 dvconst 25834 dvnff 25841 dvn0 25842 dvcmul 25863 dvcmulf 25864 fta1blem 26092 plyeq0lem 26131 coemulc 26176 dgreq0 26187 dgrmulc 26193 qaa 26247 dchrisumlema 27415 exps1 28338 expsp1 28339 suppovss 32637 fdifsuppconst 32645 ofcc 34072 ofcof 34073 sseqf 34359 sseqp1 34362 lpadleft 34650 cvmlift3lem9 35299 ismrer1 37817 frlmvscadiccat 42479 evlsscaval 42537 fsuppssind 42566 ofoafo 43329 ofoaid1 43331 ofoaid2 43332 naddcnffo 43337 naddcnfid1 43340 dvsinax 45895 stoweidlem21 46003 stoweidlem47 46029 elaa2 46216 zlmodzxzscm 48342 2sphere0 48736 fvconstr 48847 fvconstrn0 48848 |
| Copyright terms: Public domain | W3C validator |