| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvconst2g | Structured version Visualization version GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
| Ref | Expression |
|---|---|
| fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6715 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | fvconst 7102 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4575 × cxp 5617 ⟶wf 6482 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: fconst2g 7143 fvconst2 7144 ofc1 7644 ofc2 7645 caofid0l 7649 caofid0r 7650 caofid1 7651 caofid2 7652 fnsuppres 8127 ser0 13963 ser1const 13967 exp1 13976 expp1 13977 climconst2 15457 climaddc1 15544 climmulc2 15546 climsubc1 15547 climsubc2 15548 climlec2 15568 fsumconst 15699 supcvg 15765 prodf1 15800 prod0 15852 fprodconst 15887 seq1st 16484 algr0 16485 algrf 16486 ramz 16939 pwsbas 17393 pwsplusgval 17396 pwsmulrval 17397 pwsle 17398 pwsvscafval 17400 pwspjmhm 18740 pwsco1mhm 18742 pwsinvg 18968 mulgnngsum 18994 mulg1 18996 mulgnnp1 18997 mulgnnsubcl 19001 mulgnn0z 19016 mulgnndir 19018 mulgnn0di 19739 gsumconst 19848 pwslmod 20905 frlmvscaval 21707 psrlidm 21900 psrascl 21917 coe1tm 22188 coe1fzgsumd 22220 evl1scad 22251 evls1scafv 22282 decpmatid 22686 pmatcollpwscmatlem1 22705 lmconst 23177 cnconst2 23199 xkoptsub 23570 xkopt 23571 xkopjcn 23572 tmdgsum 24011 tmdgsum2 24012 symgtgp 24022 cstucnd 24199 pcoptcl 24949 pcopt 24950 pcopt2 24951 dvidlem 25844 dvconst 25846 dvnff 25853 dvn0 25854 dvcmul 25875 dvcmulf 25876 fta1blem 26104 plyeq0lem 26143 coemulc 26188 dgreq0 26199 dgrmulc 26205 qaa 26259 dchrisumlema 27427 exps1 28352 expsp1 28353 constcof 32606 suppovss 32666 fdifsuppconst 32674 ofcc 34140 ofcof 34141 sseqf 34426 sseqp1 34429 lpadleft 34717 cvmlift3lem9 35392 ismrer1 37898 frlmvscadiccat 42624 evlsscaval 42682 fsuppssind 42711 ofoafo 43473 ofoaid1 43475 ofoaid2 43476 naddcnffo 43481 naddcnfid1 43484 dvsinax 46035 stoweidlem21 46143 stoweidlem47 46169 elaa2 46356 zlmodzxzscm 48481 2sphere0 48875 fvconstr 48986 fvconstrn0 48987 |
| Copyright terms: Public domain | W3C validator |