Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvconst2g | Structured version Visualization version GIF version |
Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
Ref | Expression |
---|---|
fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6691 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | fvconst 7068 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
3 | 1, 2 | sylan 581 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {csn 4565 × cxp 5598 ⟶wf 6454 ‘cfv 6458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 |
This theorem is referenced by: fconst2g 7110 fvconst2 7111 ofc1 7591 ofc2 7592 caofid0l 7596 caofid0r 7597 caofid1 7598 caofid2 7599 fnsuppres 8038 ser0 13821 ser1const 13825 exp1 13834 expp1 13835 climconst2 15302 climaddc1 15389 climmulc2 15391 climsubc1 15392 climsubc2 15393 climlec2 15415 fsumconst 15547 supcvg 15613 prodf1 15648 prod0 15698 fprodconst 15733 seq1st 16321 algr0 16322 algrf 16323 ramz 16771 pwsbas 17243 pwsplusgval 17246 pwsmulrval 17247 pwsle 17248 pwsvscafval 17250 pwspjmhm 18513 pwsco1mhm 18515 pwsinvg 18733 mulgnngsum 18754 mulg1 18756 mulgnnp1 18757 mulgnnsubcl 18761 mulgnn0z 18775 mulgnndir 18777 mulgnn0di 19472 gsumconst 19580 pwslmod 20277 frlmvscaval 21020 psrlidm 21217 coe1tm 21489 coe1fzgsumd 21518 evl1scad 21546 decpmatid 21964 pmatcollpwscmatlem1 21983 lmconst 22457 cnconst2 22479 xkoptsub 22850 xkopt 22851 xkopjcn 22852 tmdgsum 23291 tmdgsum2 23292 symgtgp 23302 cstucnd 23481 pcoptcl 24229 pcopt 24230 pcopt2 24231 dvidlem 25124 dvconst 25126 dvnff 25132 dvn0 25133 dvcmul 25153 dvcmulf 25154 fta1blem 25378 plyeq0lem 25416 coemulc 25461 dgreq0 25471 dgrmulc 25477 qaa 25528 dchrisumlema 26681 suppovss 31062 fdifsuppconst 31068 ofcc 32119 ofcof 32120 sseqf 32404 sseqp1 32407 lpadleft 32708 cvmlift3lem9 33334 ismrer1 36040 frlmvscadiccat 40274 evlsscaval 40310 fsuppssind 40319 mhphf 40322 dvsinax 43503 stoweidlem21 43611 stoweidlem47 43637 elaa2 43824 zlmodzxzscm 45751 2sphere0 46154 fvconstr 46241 fvconstrn0 46242 |
Copyright terms: Public domain | W3C validator |