Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvconst2g | Structured version Visualization version GIF version |
Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
Ref | Expression |
---|---|
fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6657 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | fvconst 7030 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {csn 4566 × cxp 5586 ⟶wf 6426 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 |
This theorem is referenced by: fconst2g 7072 fvconst2 7073 ofc1 7550 ofc2 7551 caofid0l 7555 caofid0r 7556 caofid1 7557 caofid2 7558 fnsuppres 7991 ser0 13756 ser1const 13760 exp1 13769 expp1 13770 climconst2 15238 climaddc1 15325 climmulc2 15327 climsubc1 15328 climsubc2 15329 climlec2 15351 fsumconst 15483 supcvg 15549 prodf1 15584 prod0 15634 fprodconst 15669 seq1st 16257 algr0 16258 algrf 16259 ramz 16707 pwsbas 17179 pwsplusgval 17182 pwsmulrval 17183 pwsle 17184 pwsvscafval 17186 pwspjmhm 18449 pwsco1mhm 18451 pwsinvg 18669 mulgnngsum 18690 mulg1 18692 mulgnnp1 18693 mulgnnsubcl 18697 mulgnn0z 18711 mulgnndir 18713 mulgnn0di 19408 gsumconst 19516 pwslmod 20213 frlmvscaval 20956 psrlidm 21153 coe1tm 21425 coe1fzgsumd 21454 evl1scad 21482 decpmatid 21900 pmatcollpwscmatlem1 21919 lmconst 22393 cnconst2 22415 xkoptsub 22786 xkopt 22787 xkopjcn 22788 tmdgsum 23227 tmdgsum2 23228 symgtgp 23238 cstucnd 23417 pcoptcl 24165 pcopt 24166 pcopt2 24167 dvidlem 25060 dvconst 25062 dvnff 25068 dvn0 25069 dvcmul 25089 dvcmulf 25090 fta1blem 25314 plyeq0lem 25352 coemulc 25397 dgreq0 25407 dgrmulc 25413 qaa 25464 dchrisumlema 26617 suppovss 30996 fdifsuppconst 31002 ofcc 32053 ofcof 32054 sseqf 32338 sseqp1 32341 lpadleft 32642 cvmlift3lem9 33268 ismrer1 35975 frlmvscadiccat 40217 evlsscaval 40253 fsuppssind 40262 mhphf 40265 dvsinax 43408 stoweidlem21 43516 stoweidlem47 43542 elaa2 43729 zlmodzxzscm 45645 2sphere0 46048 fvconstr 46135 fvconstrn0 46136 |
Copyright terms: Public domain | W3C validator |