Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvconst2g | Structured version Visualization version GIF version |
Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
Ref | Expression |
---|---|
fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6552 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | fvconst 6918 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
3 | 1, 2 | sylan 584 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 {csn 4523 × cxp 5523 ⟶wf 6332 ‘cfv 6336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-fv 6344 |
This theorem is referenced by: fconst2g 6957 fvconst2 6958 ofc1 7431 ofc2 7432 caofid0l 7436 caofid0r 7437 caofid1 7438 caofid2 7439 fnsuppres 7866 ser0 13465 ser1const 13469 exp1 13478 expp1 13479 climconst2 14946 climaddc1 15032 climmulc2 15034 climsubc1 15035 climsubc2 15036 climlec2 15056 fsumconst 15186 supcvg 15252 prodf1 15288 prod0 15338 fprodconst 15373 seq1st 15960 algr0 15961 algrf 15962 ramz 16409 pwsbas 16811 pwsplusgval 16814 pwsmulrval 16815 pwsle 16816 pwsvscafval 16818 pwspjmhm 18053 pwsco1mhm 18055 pwsinvg 18272 mulgnngsum 18293 mulg1 18295 mulgnnp1 18296 mulgnnsubcl 18300 mulgnn0z 18314 mulgnndir 18316 mulgnn0di 19007 gsumconst 19115 pwslmod 19803 frlmvscaval 20526 psrlidm 20724 coe1tm 20990 coe1fzgsumd 21019 evl1scad 21047 decpmatid 21463 pmatcollpwscmatlem1 21482 lmconst 21954 cnconst2 21976 xkoptsub 22347 xkopt 22348 xkopjcn 22349 tmdgsum 22788 tmdgsum2 22789 symgtgp 22799 cstucnd 22978 pcoptcl 23715 pcopt 23716 pcopt2 23717 dvidlem 24607 dvconst 24609 dvnff 24615 dvn0 24616 dvcmul 24636 dvcmulf 24637 fta1blem 24861 plyeq0lem 24899 coemulc 24944 dgreq0 24954 dgrmulc 24960 qaa 25011 dchrisumlema 26164 suppovss 30534 fdifsuppconst 30540 ofcc 31586 ofcof 31587 sseqf 31871 sseqp1 31874 lpadleft 32175 cvmlift3lem9 32798 ismrer1 35549 frlmvscadiccat 39737 evlsscaval 39771 fsuppssind 39780 mhphf 39783 dvsinax 42914 stoweidlem21 43022 stoweidlem47 43048 elaa2 43235 zlmodzxzscm 45119 2sphere0 45522 |
Copyright terms: Public domain | W3C validator |