![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvconst2g | Structured version Visualization version GIF version |
Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
Ref | Expression |
---|---|
fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6795 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | fvconst 7183 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {csn 4630 × cxp 5686 ⟶wf 6558 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 |
This theorem is referenced by: fconst2g 7222 fvconst2 7223 ofc1 7724 ofc2 7725 caofid0l 7729 caofid0r 7730 caofid1 7731 caofid2 7732 fnsuppres 8214 ser0 14091 ser1const 14095 exp1 14104 expp1 14105 climconst2 15580 climaddc1 15667 climmulc2 15669 climsubc1 15670 climsubc2 15671 climlec2 15691 fsumconst 15822 supcvg 15888 prodf1 15923 prod0 15975 fprodconst 16010 seq1st 16604 algr0 16605 algrf 16606 ramz 17058 pwsbas 17533 pwsplusgval 17536 pwsmulrval 17537 pwsle 17538 pwsvscafval 17540 pwspjmhm 18855 pwsco1mhm 18857 pwsinvg 19083 mulgnngsum 19109 mulg1 19111 mulgnnp1 19112 mulgnnsubcl 19116 mulgnn0z 19131 mulgnndir 19133 mulgnn0di 19857 gsumconst 19966 pwslmod 20985 frlmvscaval 21805 psrlidm 21999 psrascl 22016 coe1tm 22291 coe1fzgsumd 22323 evl1scad 22354 evls1scafv 22385 decpmatid 22791 pmatcollpwscmatlem1 22810 lmconst 23284 cnconst2 23306 xkoptsub 23677 xkopt 23678 xkopjcn 23679 tmdgsum 24118 tmdgsum2 24119 symgtgp 24129 cstucnd 24308 pcoptcl 25067 pcopt 25068 pcopt2 25069 dvidlem 25964 dvconst 25966 dvnff 25973 dvn0 25974 dvcmul 25995 dvcmulf 25996 fta1blem 26224 plyeq0lem 26263 coemulc 26308 dgreq0 26319 dgrmulc 26325 qaa 26379 dchrisumlema 27546 exps1 28425 expsp1 28426 suppovss 32695 fdifsuppconst 32703 ofcc 34086 ofcof 34087 sseqf 34373 sseqp1 34376 lpadleft 34676 cvmlift3lem9 35311 ismrer1 37824 frlmvscadiccat 42492 evlsscaval 42550 fsuppssind 42579 ofoafo 43345 ofoaid1 43347 ofoaid2 43348 naddcnffo 43353 naddcnfid1 43356 dvsinax 45868 stoweidlem21 45976 stoweidlem47 46002 elaa2 46189 zlmodzxzscm 48201 2sphere0 48599 fvconstr 48685 fvconstrn0 48686 |
Copyright terms: Public domain | W3C validator |