| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvconst2g | Structured version Visualization version GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
| Ref | Expression |
|---|---|
| fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 6765 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | fvconst 7154 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4601 × cxp 5652 ⟶wf 6527 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 |
| This theorem is referenced by: fconst2g 7195 fvconst2 7196 ofc1 7699 ofc2 7700 caofid0l 7704 caofid0r 7705 caofid1 7706 caofid2 7707 fnsuppres 8190 ser0 14072 ser1const 14076 exp1 14085 expp1 14086 climconst2 15564 climaddc1 15651 climmulc2 15653 climsubc1 15654 climsubc2 15655 climlec2 15675 fsumconst 15806 supcvg 15872 prodf1 15907 prod0 15959 fprodconst 15994 seq1st 16590 algr0 16591 algrf 16592 ramz 17045 pwsbas 17501 pwsplusgval 17504 pwsmulrval 17505 pwsle 17506 pwsvscafval 17508 pwspjmhm 18808 pwsco1mhm 18810 pwsinvg 19036 mulgnngsum 19062 mulg1 19064 mulgnnp1 19065 mulgnnsubcl 19069 mulgnn0z 19084 mulgnndir 19086 mulgnn0di 19806 gsumconst 19915 pwslmod 20927 frlmvscaval 21728 psrlidm 21922 psrascl 21939 coe1tm 22210 coe1fzgsumd 22242 evl1scad 22273 evls1scafv 22304 decpmatid 22708 pmatcollpwscmatlem1 22727 lmconst 23199 cnconst2 23221 xkoptsub 23592 xkopt 23593 xkopjcn 23594 tmdgsum 24033 tmdgsum2 24034 symgtgp 24044 cstucnd 24222 pcoptcl 24972 pcopt 24973 pcopt2 24974 dvidlem 25868 dvconst 25870 dvnff 25877 dvn0 25878 dvcmul 25899 dvcmulf 25900 fta1blem 26128 plyeq0lem 26167 coemulc 26212 dgreq0 26223 dgrmulc 26229 qaa 26283 dchrisumlema 27451 exps1 28366 expsp1 28367 suppovss 32658 fdifsuppconst 32666 ofcc 34137 ofcof 34138 sseqf 34424 sseqp1 34427 lpadleft 34715 cvmlift3lem9 35349 ismrer1 37862 frlmvscadiccat 42529 evlsscaval 42587 fsuppssind 42616 ofoafo 43380 ofoaid1 43382 ofoaid2 43383 naddcnffo 43388 naddcnfid1 43391 dvsinax 45942 stoweidlem21 46050 stoweidlem47 46076 elaa2 46263 zlmodzxzscm 48332 2sphere0 48730 fvconstr 48838 fvconstrn0 48839 |
| Copyright terms: Public domain | W3C validator |