MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvmptrab1w Structured version   Visualization version   GIF version

Theorem elfvmptrab1w 7013
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Version of elfvmptrab1 7014 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by Alexander van der Vekens, 15-Jul-2018.) Avoid ax-13 2376. (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
elfvmptrab1w.f 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
elfvmptrab1w.v (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
Assertion
Ref Expression
elfvmptrab1w (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑦,𝑌   𝑥,𝑚,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐹(𝑥,𝑦,𝑚)   𝑀(𝑚)   𝑉(𝑦,𝑚)   𝑋(𝑚)   𝑌(𝑥,𝑚)

Proof of Theorem elfvmptrab1w
StepHypRef Expression
1 elfvdm 6913 . 2 (𝑌 ∈ (𝐹𝑋) → 𝑋 ∈ dom 𝐹)
2 elfvmptrab1w.f . . . . . . 7 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
32dmmptss 6230 . . . . . 6 dom 𝐹𝑉
43sseli 3954 . . . . 5 (𝑋 ∈ dom 𝐹𝑋𝑉)
5 elfvmptrab1w.v . . . . . 6 (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
6 rabexg 5307 . . . . . 6 (𝑋 / 𝑚𝑀 ∈ V → {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V)
74, 5, 63syl 18 . . . . 5 (𝑋 ∈ dom 𝐹 → {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V)
8 nfcv 2898 . . . . . 6 𝑥𝑋
9 nfsbc1v 3785 . . . . . . 7 𝑥[𝑋 / 𝑥]𝜑
10 nfcv 2898 . . . . . . . 8 𝑥𝑀
118, 10nfcsbw 3900 . . . . . . 7 𝑥𝑋 / 𝑚𝑀
129, 11nfrabw 3454 . . . . . 6 𝑥{𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}
13 csbeq1 3877 . . . . . . 7 (𝑥 = 𝑋𝑥 / 𝑚𝑀 = 𝑋 / 𝑚𝑀)
14 sbceq1a 3776 . . . . . . 7 (𝑥 = 𝑋 → (𝜑[𝑋 / 𝑥]𝜑))
1513, 14rabeqbidv 3434 . . . . . 6 (𝑥 = 𝑋 → {𝑦𝑥 / 𝑚𝑀𝜑} = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
168, 12, 15, 2fvmptf 7007 . . . . 5 ((𝑋𝑉 ∧ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V) → (𝐹𝑋) = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
174, 7, 16syl2anc 584 . . . 4 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
1817eleq2d 2820 . . 3 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹𝑋) ↔ 𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}))
19 elrabi 3666 . . . . 5 (𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} → 𝑌𝑋 / 𝑚𝑀)
204, 19anim12i 613 . . . 4 ((𝑋 ∈ dom 𝐹𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
2120ex 412 . . 3 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
2218, 21sylbid 240 . 2 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
231, 22mpcom 38 1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  [wsbc 3765  csb 3874  cmpt 5201  dom cdm 5654  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539
This theorem is referenced by:  elfvmptrab  7015
  Copyright terms: Public domain W3C validator