Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsi Structured version   Visualization version   GIF version

Theorem cvmsi 35250
Description: One direction of cvmsval 35251. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmsi (𝑇 ∈ (𝑆𝑈) → (𝑈𝐽 ∧ (𝑇𝐶𝑇 ≠ ∅) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmsi
StepHypRef Expression
1 cvmcov.1 . . 3 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
21cvmsrcl 35249 . 2 (𝑇 ∈ (𝑆𝑈) → 𝑈𝐽)
3 imaeq2 6076 . . . . . . . . . . 11 (𝑘 = 𝑈 → (𝐹𝑘) = (𝐹𝑈))
43eqeq2d 2746 . . . . . . . . . 10 (𝑘 = 𝑈 → ( 𝑠 = (𝐹𝑘) ↔ 𝑠 = (𝐹𝑈)))
5 oveq2 7439 . . . . . . . . . . . . . 14 (𝑘 = 𝑈 → (𝐽t 𝑘) = (𝐽t 𝑈))
65oveq2d 7447 . . . . . . . . . . . . 13 (𝑘 = 𝑈 → ((𝐶t 𝑢)Homeo(𝐽t 𝑘)) = ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))
76eleq2d 2825 . . . . . . . . . . . 12 (𝑘 = 𝑈 → ((𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)) ↔ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))
87anbi2d 630 . . . . . . . . . . 11 (𝑘 = 𝑈 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))) ↔ (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
98ralbidv 3176 . . . . . . . . . 10 (𝑘 = 𝑈 → (∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))) ↔ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
104, 9anbi12d 632 . . . . . . . . 9 (𝑘 = 𝑈 → (( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))) ↔ ( 𝑠 = (𝐹𝑈) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
1110rabbidv 3441 . . . . . . . 8 (𝑘 = 𝑈 → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))} = {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑈) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))})
1211, 1fvmptss2 7042 . . . . . . 7 (𝑆𝑈) ⊆ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑈) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))}
1312sseli 3991 . . . . . 6 (𝑇 ∈ (𝑆𝑈) → 𝑇 ∈ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑈) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))})
14 unieq 4923 . . . . . . . . 9 (𝑠 = 𝑇 𝑠 = 𝑇)
1514eqeq1d 2737 . . . . . . . 8 (𝑠 = 𝑇 → ( 𝑠 = (𝐹𝑈) ↔ 𝑇 = (𝐹𝑈)))
16 difeq1 4129 . . . . . . . . . . 11 (𝑠 = 𝑇 → (𝑠 ∖ {𝑢}) = (𝑇 ∖ {𝑢}))
1716raleqdv 3324 . . . . . . . . . 10 (𝑠 = 𝑇 → (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ↔ ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅))
1817anbi1d 631 . . . . . . . . 9 (𝑠 = 𝑇 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) ↔ (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
1918raleqbi1dv 3336 . . . . . . . 8 (𝑠 = 𝑇 → (∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) ↔ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
2015, 19anbi12d 632 . . . . . . 7 (𝑠 = 𝑇 → (( 𝑠 = (𝐹𝑈) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))) ↔ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
2120elrab 3695 . . . . . 6 (𝑇 ∈ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑈) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))} ↔ (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
2213, 21sylib 218 . . . . 5 (𝑇 ∈ (𝑆𝑈) → (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
2322simpld 494 . . . 4 (𝑇 ∈ (𝑆𝑈) → 𝑇 ∈ (𝒫 𝐶 ∖ {∅}))
24 eldifsn 4791 . . . 4 (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ↔ (𝑇 ∈ 𝒫 𝐶𝑇 ≠ ∅))
2523, 24sylib 218 . . 3 (𝑇 ∈ (𝑆𝑈) → (𝑇 ∈ 𝒫 𝐶𝑇 ≠ ∅))
26 elpwi 4612 . . . 4 (𝑇 ∈ 𝒫 𝐶𝑇𝐶)
2726anim1i 615 . . 3 ((𝑇 ∈ 𝒫 𝐶𝑇 ≠ ∅) → (𝑇𝐶𝑇 ≠ ∅))
2825, 27syl 17 . 2 (𝑇 ∈ (𝑆𝑈) → (𝑇𝐶𝑇 ≠ ∅))
2922simprd 495 . 2 (𝑇 ∈ (𝑆𝑈) → ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
302, 28, 293jca 1127 1 (𝑇 ∈ (𝑆𝑈) → (𝑈𝐽 ∧ (𝑇𝐶𝑇 ≠ ∅) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  cdif 3960  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   cuni 4912  cmpt 5231  ccnv 5688  cres 5691  cima 5692  cfv 6563  (class class class)co 7431  t crest 17467  Homeochmeo 23777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434
This theorem is referenced by:  cvmsval  35251  cvmsss  35252  cvmsn0  35253  cvmsuni  35254  cvmsdisj  35255  cvmshmeo  35256
  Copyright terms: Public domain W3C validator