Proof of Theorem cvmsi
Step | Hyp | Ref
| Expression |
1 | | cvmcov.1 |
. . 3
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
2 | 1 | cvmsrcl 33226 |
. 2
⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) |
3 | | imaeq2 5965 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑈 → (◡𝐹 “ 𝑘) = (◡𝐹 “ 𝑈)) |
4 | 3 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑈 → (∪ 𝑠 = (◡𝐹 “ 𝑘) ↔ ∪ 𝑠 = (◡𝐹 “ 𝑈))) |
5 | | oveq2 7283 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑈 → (𝐽 ↾t 𝑘) = (𝐽 ↾t 𝑈)) |
6 | 5 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑈 → ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)) = ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) |
7 | 6 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑈 → ((𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)) ↔ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))) |
8 | 7 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑈 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))) ↔ (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) |
9 | 8 | ralbidv 3112 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑈 → (∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))) ↔ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) |
10 | 4, 9 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑘 = 𝑈 → ((∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)))) ↔ (∪
𝑠 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) |
11 | 10 | rabbidv 3414 |
. . . . . . . 8
⊢ (𝑘 = 𝑈 → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))} = {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))}) |
12 | 11, 1 | fvmptss2 6900 |
. . . . . . 7
⊢ (𝑆‘𝑈) ⊆ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))} |
13 | 12 | sseli 3917 |
. . . . . 6
⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ∈ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))}) |
14 | | unieq 4850 |
. . . . . . . . 9
⊢ (𝑠 = 𝑇 → ∪ 𝑠 = ∪
𝑇) |
15 | 14 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑠 = 𝑇 → (∪ 𝑠 = (◡𝐹 “ 𝑈) ↔ ∪ 𝑇 = (◡𝐹 “ 𝑈))) |
16 | | difeq1 4050 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑇 → (𝑠 ∖ {𝑢}) = (𝑇 ∖ {𝑢})) |
17 | 16 | raleqdv 3348 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑇 → (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ↔ ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅)) |
18 | 17 | anbi1d 630 |
. . . . . . . . 9
⊢ (𝑠 = 𝑇 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) ↔ (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) |
19 | 18 | raleqbi1dv 3340 |
. . . . . . . 8
⊢ (𝑠 = 𝑇 → (∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) ↔ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) |
20 | 15, 19 | anbi12d 631 |
. . . . . . 7
⊢ (𝑠 = 𝑇 → ((∪ 𝑠 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))) ↔ (∪
𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) |
21 | 20 | elrab 3624 |
. . . . . 6
⊢ (𝑇 ∈ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))} ↔ (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) |
22 | 13, 21 | sylib 217 |
. . . . 5
⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) |
23 | 22 | simpld 495 |
. . . 4
⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ∈ (𝒫 𝐶 ∖ {∅})) |
24 | | eldifsn 4720 |
. . . 4
⊢ (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ↔
(𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅)) |
25 | 23, 24 | sylib 217 |
. . 3
⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅)) |
26 | | elpwi 4542 |
. . . 4
⊢ (𝑇 ∈ 𝒫 𝐶 → 𝑇 ⊆ 𝐶) |
27 | 26 | anim1i 615 |
. . 3
⊢ ((𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅) → (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅)) |
28 | 25, 27 | syl 17 |
. 2
⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅)) |
29 | 22 | simprd 496 |
. 2
⊢ (𝑇 ∈ (𝑆‘𝑈) → (∪ 𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) |
30 | 2, 28, 29 | 3jca 1127 |
1
⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) |