Proof of Theorem cvmsi
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvmcov.1 | . . 3
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | 
| 2 | 1 | cvmsrcl 35270 | . 2
⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) | 
| 3 |  | imaeq2 6073 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑈 → (◡𝐹 “ 𝑘) = (◡𝐹 “ 𝑈)) | 
| 4 | 3 | eqeq2d 2747 | . . . . . . . . . 10
⊢ (𝑘 = 𝑈 → (∪ 𝑠 = (◡𝐹 “ 𝑘) ↔ ∪ 𝑠 = (◡𝐹 “ 𝑈))) | 
| 5 |  | oveq2 7440 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑈 → (𝐽 ↾t 𝑘) = (𝐽 ↾t 𝑈)) | 
| 6 | 5 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑈 → ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)) = ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) | 
| 7 | 6 | eleq2d 2826 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑈 → ((𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)) ↔ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))) | 
| 8 | 7 | anbi2d 630 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑈 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))) ↔ (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) | 
| 9 | 8 | ralbidv 3177 | . . . . . . . . . 10
⊢ (𝑘 = 𝑈 → (∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))) ↔ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) | 
| 10 | 4, 9 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑘 = 𝑈 → ((∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)))) ↔ (∪
𝑠 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) | 
| 11 | 10 | rabbidv 3443 | . . . . . . . 8
⊢ (𝑘 = 𝑈 → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))} = {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))}) | 
| 12 | 11, 1 | fvmptss2 7041 | . . . . . . 7
⊢ (𝑆‘𝑈) ⊆ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))} | 
| 13 | 12 | sseli 3978 | . . . . . 6
⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ∈ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))}) | 
| 14 |  | unieq 4917 | . . . . . . . . 9
⊢ (𝑠 = 𝑇 → ∪ 𝑠 = ∪
𝑇) | 
| 15 | 14 | eqeq1d 2738 | . . . . . . . 8
⊢ (𝑠 = 𝑇 → (∪ 𝑠 = (◡𝐹 “ 𝑈) ↔ ∪ 𝑇 = (◡𝐹 “ 𝑈))) | 
| 16 |  | difeq1 4118 | . . . . . . . . . . 11
⊢ (𝑠 = 𝑇 → (𝑠 ∖ {𝑢}) = (𝑇 ∖ {𝑢})) | 
| 17 | 16 | raleqdv 3325 | . . . . . . . . . 10
⊢ (𝑠 = 𝑇 → (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ↔ ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅)) | 
| 18 | 17 | anbi1d 631 | . . . . . . . . 9
⊢ (𝑠 = 𝑇 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) ↔ (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) | 
| 19 | 18 | raleqbi1dv 3337 | . . . . . . . 8
⊢ (𝑠 = 𝑇 → (∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) ↔ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) | 
| 20 | 15, 19 | anbi12d 632 | . . . . . . 7
⊢ (𝑠 = 𝑇 → ((∪ 𝑠 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))) ↔ (∪
𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) | 
| 21 | 20 | elrab 3691 | . . . . . 6
⊢ (𝑇 ∈ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))} ↔ (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) | 
| 22 | 13, 21 | sylib 218 | . . . . 5
⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) | 
| 23 | 22 | simpld 494 | . . . 4
⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ∈ (𝒫 𝐶 ∖ {∅})) | 
| 24 |  | eldifsn 4785 | . . . 4
⊢ (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ↔
(𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅)) | 
| 25 | 23, 24 | sylib 218 | . . 3
⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅)) | 
| 26 |  | elpwi 4606 | . . . 4
⊢ (𝑇 ∈ 𝒫 𝐶 → 𝑇 ⊆ 𝐶) | 
| 27 | 26 | anim1i 615 | . . 3
⊢ ((𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅) → (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅)) | 
| 28 | 25, 27 | syl 17 | . 2
⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅)) | 
| 29 | 22 | simprd 495 | . 2
⊢ (𝑇 ∈ (𝑆‘𝑈) → (∪ 𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) | 
| 30 | 2, 28, 29 | 3jca 1128 | 1
⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) |