Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsi Structured version   Visualization version   GIF version

Theorem cvmsi 35297
Description: One direction of cvmsval 35298. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmsi (𝑇 ∈ (𝑆𝑈) → (𝑈𝐽 ∧ (𝑇𝐶𝑇 ≠ ∅) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmsi
StepHypRef Expression
1 cvmcov.1 . . 3 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
21cvmsrcl 35296 . 2 (𝑇 ∈ (𝑆𝑈) → 𝑈𝐽)
3 imaeq2 6005 . . . . . . . . . . 11 (𝑘 = 𝑈 → (𝐹𝑘) = (𝐹𝑈))
43eqeq2d 2742 . . . . . . . . . 10 (𝑘 = 𝑈 → ( 𝑠 = (𝐹𝑘) ↔ 𝑠 = (𝐹𝑈)))
5 oveq2 7354 . . . . . . . . . . . . . 14 (𝑘 = 𝑈 → (𝐽t 𝑘) = (𝐽t 𝑈))
65oveq2d 7362 . . . . . . . . . . . . 13 (𝑘 = 𝑈 → ((𝐶t 𝑢)Homeo(𝐽t 𝑘)) = ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))
76eleq2d 2817 . . . . . . . . . . . 12 (𝑘 = 𝑈 → ((𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)) ↔ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))
87anbi2d 630 . . . . . . . . . . 11 (𝑘 = 𝑈 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))) ↔ (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
98ralbidv 3155 . . . . . . . . . 10 (𝑘 = 𝑈 → (∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))) ↔ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
104, 9anbi12d 632 . . . . . . . . 9 (𝑘 = 𝑈 → (( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘)))) ↔ ( 𝑠 = (𝐹𝑈) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
1110rabbidv 3402 . . . . . . . 8 (𝑘 = 𝑈 → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))} = {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑈) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))})
1211, 1fvmptss2 6955 . . . . . . 7 (𝑆𝑈) ⊆ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑈) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))}
1312sseli 3930 . . . . . 6 (𝑇 ∈ (𝑆𝑈) → 𝑇 ∈ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑈) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))})
14 unieq 4870 . . . . . . . . 9 (𝑠 = 𝑇 𝑠 = 𝑇)
1514eqeq1d 2733 . . . . . . . 8 (𝑠 = 𝑇 → ( 𝑠 = (𝐹𝑈) ↔ 𝑇 = (𝐹𝑈)))
16 difeq1 4069 . . . . . . . . . . 11 (𝑠 = 𝑇 → (𝑠 ∖ {𝑢}) = (𝑇 ∖ {𝑢}))
1716raleqdv 3292 . . . . . . . . . 10 (𝑠 = 𝑇 → (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ↔ ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅))
1817anbi1d 631 . . . . . . . . 9 (𝑠 = 𝑇 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) ↔ (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
1918raleqbi1dv 3304 . . . . . . . 8 (𝑠 = 𝑇 → (∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) ↔ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
2015, 19anbi12d 632 . . . . . . 7 (𝑠 = 𝑇 → (( 𝑠 = (𝐹𝑈) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))) ↔ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
2120elrab 3647 . . . . . 6 (𝑇 ∈ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑈) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))} ↔ (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
2213, 21sylib 218 . . . . 5 (𝑇 ∈ (𝑆𝑈) → (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
2322simpld 494 . . . 4 (𝑇 ∈ (𝑆𝑈) → 𝑇 ∈ (𝒫 𝐶 ∖ {∅}))
24 eldifsn 4738 . . . 4 (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ↔ (𝑇 ∈ 𝒫 𝐶𝑇 ≠ ∅))
2523, 24sylib 218 . . 3 (𝑇 ∈ (𝑆𝑈) → (𝑇 ∈ 𝒫 𝐶𝑇 ≠ ∅))
26 elpwi 4557 . . . 4 (𝑇 ∈ 𝒫 𝐶𝑇𝐶)
2726anim1i 615 . . 3 ((𝑇 ∈ 𝒫 𝐶𝑇 ≠ ∅) → (𝑇𝐶𝑇 ≠ ∅))
2825, 27syl 17 . 2 (𝑇 ∈ (𝑆𝑈) → (𝑇𝐶𝑇 ≠ ∅))
2922simprd 495 . 2 (𝑇 ∈ (𝑆𝑈) → ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
302, 28, 293jca 1128 1 (𝑇 ∈ (𝑆𝑈) → (𝑈𝐽 ∧ (𝑇𝐶𝑇 ≠ ∅) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  cdif 3899  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576   cuni 4859  cmpt 5172  ccnv 5615  cres 5618  cima 5619  cfv 6481  (class class class)co 7346  t crest 17321  Homeochmeo 23666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349
This theorem is referenced by:  cvmsval  35298  cvmsss  35299  cvmsn0  35300  cvmsuni  35301  cvmsdisj  35302  cvmshmeo  35303
  Copyright terms: Public domain W3C validator