Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fxpss Structured version   Visualization version   GIF version

Theorem fxpss 33131
Description: The set of fixed points is a subset of the set acted upon. (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
fxpval.1 (𝜑𝐵𝑉)
fxpval.2 (𝜑𝐴𝑊)
Assertion
Ref Expression
fxpss (𝜑 → (𝐵FixPts𝐴) ⊆ 𝐵)

Proof of Theorem fxpss
Dummy variables 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fxpval.1 . . 3 (𝜑𝐵𝑉)
2 fxpval.2 . . 3 (𝜑𝐴𝑊)
31, 2fxpval 33130 . 2 (𝜑 → (𝐵FixPts𝐴) = {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
4 ssrab2 4051 . 2 {𝑥𝐵 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} ⊆ 𝐵
53, 4eqsstrdi 3999 1 (𝜑 → (𝐵FixPts𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3046  {crab 3411  wss 3922  dom cdm 5646  (class class class)co 7394  FixPtscfxp 33128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-iota 6472  df-fun 6521  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-fxp 33129
This theorem is referenced by:  fxpsubm  33137
  Copyright terms: Public domain W3C validator