Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fxpgaval Structured version   Visualization version   GIF version

Theorem fxpgaval 33126
Description: Value of the set of fixed points for a group action 𝐴 (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
fxpgaval.s 𝑈 = (Base‘𝐺)
fxpgaval.a (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
Assertion
Ref Expression
fxpgaval (𝜑 → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
Distinct variable groups:   𝐴,𝑝,𝑥   𝑥,𝐶   𝐺,𝑝   𝑈,𝑝   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑝)   𝐶(𝑝)   𝑈(𝑥)   𝐺(𝑥)

Proof of Theorem fxpgaval
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝐶 = ∅) → 𝐶 = ∅)
21rabeqdv 3408 . . . 4 ((𝜑𝐶 = ∅) → {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = {𝑥 ∈ ∅ ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
3 rab0 4334 . . . 4 {𝑥 ∈ ∅ ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = ∅
42, 3eqtrdi 2781 . . 3 ((𝜑𝐶 = ∅) → {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = ∅)
5 fxpgaval.a . . . . . 6 (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
6 gaset 19198 . . . . . 6 (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐶 ∈ V)
75, 6syl 17 . . . . 5 (𝜑𝐶 ∈ V)
87, 5fxpval 33124 . . . 4 (𝜑 → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
98adantr 480 . . 3 ((𝜑𝐶 = ∅) → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
101rabeqdv 3408 . . . 4 ((𝜑𝐶 = ∅) → {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥} = {𝑥 ∈ ∅ ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
11 rab0 4334 . . . 4 {𝑥 ∈ ∅ ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥} = ∅
1210, 11eqtrdi 2781 . . 3 ((𝜑𝐶 = ∅) → {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥} = ∅)
134, 9, 123eqtr4d 2775 . 2 ((𝜑𝐶 = ∅) → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
148adantr 480 . . 3 ((𝜑𝐶 ≠ ∅) → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
15 fxpgaval.s . . . . . . . . . 10 𝑈 = (Base‘𝐺)
1615gaf 19200 . . . . . . . . 9 (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐴:(𝑈 × 𝐶)⟶𝐶)
175, 16syl 17 . . . . . . . 8 (𝜑𝐴:(𝑈 × 𝐶)⟶𝐶)
1817fdmd 6657 . . . . . . 7 (𝜑 → dom 𝐴 = (𝑈 × 𝐶))
1918dmeqd 5843 . . . . . 6 (𝜑 → dom dom 𝐴 = dom (𝑈 × 𝐶))
20 dmxp 5866 . . . . . 6 (𝐶 ≠ ∅ → dom (𝑈 × 𝐶) = 𝑈)
2119, 20sylan9eq 2785 . . . . 5 ((𝜑𝐶 ≠ ∅) → dom dom 𝐴 = 𝑈)
2221raleqdv 3290 . . . 4 ((𝜑𝐶 ≠ ∅) → (∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥 ↔ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥))
2322rabbidv 3400 . . 3 ((𝜑𝐶 ≠ ∅) → {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
2414, 23eqtrd 2765 . 2 ((𝜑𝐶 ≠ ∅) → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
2513, 24pm2.61dane 3013 1 (𝜑 → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wne 2926  wral 3045  {crab 3393  Vcvv 3434  c0 4281   × cxp 5612  dom cdm 5614  wf 6473  cfv 6477  (class class class)co 7341  Basecbs 17112   GrpAct cga 19194  FixPtscfxp 33122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-ga 19195  df-fxp 33123
This theorem is referenced by:  isfxp  33127  fxpgaeq  33128  cntrval2  33130
  Copyright terms: Public domain W3C validator