Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fxpgaval Structured version   Visualization version   GIF version

Theorem fxpgaval 33147
Description: Value of the set of fixed points for a group action 𝐴 (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
fxpgaval.s 𝑈 = (Base‘𝐺)
fxpgaval.a (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
Assertion
Ref Expression
fxpgaval (𝜑 → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
Distinct variable groups:   𝐴,𝑝,𝑥   𝑥,𝐶   𝐺,𝑝   𝑈,𝑝   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑝)   𝐶(𝑝)   𝑈(𝑥)   𝐺(𝑥)

Proof of Theorem fxpgaval
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝐶 = ∅) → 𝐶 = ∅)
21rabeqdv 3412 . . . 4 ((𝜑𝐶 = ∅) → {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = {𝑥 ∈ ∅ ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
3 rab0 4337 . . . 4 {𝑥 ∈ ∅ ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = ∅
42, 3eqtrdi 2784 . . 3 ((𝜑𝐶 = ∅) → {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = ∅)
5 fxpgaval.a . . . . . 6 (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
6 gaset 19215 . . . . . 6 (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐶 ∈ V)
75, 6syl 17 . . . . 5 (𝜑𝐶 ∈ V)
87, 5fxpval 33145 . . . 4 (𝜑 → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
98adantr 480 . . 3 ((𝜑𝐶 = ∅) → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
101rabeqdv 3412 . . . 4 ((𝜑𝐶 = ∅) → {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥} = {𝑥 ∈ ∅ ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
11 rab0 4337 . . . 4 {𝑥 ∈ ∅ ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥} = ∅
1210, 11eqtrdi 2784 . . 3 ((𝜑𝐶 = ∅) → {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥} = ∅)
134, 9, 123eqtr4d 2778 . 2 ((𝜑𝐶 = ∅) → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
148adantr 480 . . 3 ((𝜑𝐶 ≠ ∅) → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
15 fxpgaval.s . . . . . . . . . 10 𝑈 = (Base‘𝐺)
1615gaf 19217 . . . . . . . . 9 (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐴:(𝑈 × 𝐶)⟶𝐶)
175, 16syl 17 . . . . . . . 8 (𝜑𝐴:(𝑈 × 𝐶)⟶𝐶)
1817fdmd 6669 . . . . . . 7 (𝜑 → dom 𝐴 = (𝑈 × 𝐶))
1918dmeqd 5852 . . . . . 6 (𝜑 → dom dom 𝐴 = dom (𝑈 × 𝐶))
20 dmxp 5876 . . . . . 6 (𝐶 ≠ ∅ → dom (𝑈 × 𝐶) = 𝑈)
2119, 20sylan9eq 2788 . . . . 5 ((𝜑𝐶 ≠ ∅) → dom dom 𝐴 = 𝑈)
2221raleqdv 3294 . . . 4 ((𝜑𝐶 ≠ ∅) → (∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥 ↔ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥))
2322rabbidv 3404 . . 3 ((𝜑𝐶 ≠ ∅) → {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
2414, 23eqtrd 2768 . 2 ((𝜑𝐶 ≠ ∅) → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
2513, 24pm2.61dane 3017 1 (𝜑 → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2930  wral 3049  {crab 3397  Vcvv 3438  c0 4284   × cxp 5619  dom cdm 5621  wf 6485  cfv 6489  (class class class)co 7355  Basecbs 17130   GrpAct cga 19211  FixPtscfxp 33143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-ga 19212  df-fxp 33144
This theorem is referenced by:  isfxp  33148  fxpgaeq  33149  cntrval2  33151
  Copyright terms: Public domain W3C validator