Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fxpgaval Structured version   Visualization version   GIF version

Theorem fxpgaval 33132
Description: Value of the set of fixed points for a group action 𝐴 (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
fxpgaval.s 𝑈 = (Base‘𝐺)
fxpgaval.a (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
Assertion
Ref Expression
fxpgaval (𝜑 → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
Distinct variable groups:   𝐴,𝑝,𝑥   𝑥,𝐶   𝐺,𝑝   𝑈,𝑝   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑝)   𝐶(𝑝)   𝑈(𝑥)   𝐺(𝑥)

Proof of Theorem fxpgaval
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝐶 = ∅) → 𝐶 = ∅)
21rabeqdv 3427 . . . 4 ((𝜑𝐶 = ∅) → {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = {𝑥 ∈ ∅ ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
3 rab0 4357 . . . 4 {𝑥 ∈ ∅ ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = ∅
42, 3eqtrdi 2781 . . 3 ((𝜑𝐶 = ∅) → {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = ∅)
5 fxpgaval.a . . . . . 6 (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
6 gaset 19231 . . . . . 6 (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐶 ∈ V)
75, 6syl 17 . . . . 5 (𝜑𝐶 ∈ V)
87, 5fxpval 33130 . . . 4 (𝜑 → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
98adantr 480 . . 3 ((𝜑𝐶 = ∅) → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
101rabeqdv 3427 . . . 4 ((𝜑𝐶 = ∅) → {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥} = {𝑥 ∈ ∅ ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
11 rab0 4357 . . . 4 {𝑥 ∈ ∅ ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥} = ∅
1210, 11eqtrdi 2781 . . 3 ((𝜑𝐶 = ∅) → {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥} = ∅)
134, 9, 123eqtr4d 2775 . 2 ((𝜑𝐶 = ∅) → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
148adantr 480 . . 3 ((𝜑𝐶 ≠ ∅) → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥})
15 fxpgaval.s . . . . . . . . . 10 𝑈 = (Base‘𝐺)
1615gaf 19233 . . . . . . . . 9 (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐴:(𝑈 × 𝐶)⟶𝐶)
175, 16syl 17 . . . . . . . 8 (𝜑𝐴:(𝑈 × 𝐶)⟶𝐶)
1817fdmd 6705 . . . . . . 7 (𝜑 → dom 𝐴 = (𝑈 × 𝐶))
1918dmeqd 5877 . . . . . 6 (𝜑 → dom dom 𝐴 = dom (𝑈 × 𝐶))
20 dmxp 5900 . . . . . 6 (𝐶 ≠ ∅ → dom (𝑈 × 𝐶) = 𝑈)
2119, 20sylan9eq 2785 . . . . 5 ((𝜑𝐶 ≠ ∅) → dom dom 𝐴 = 𝑈)
2221raleqdv 3302 . . . 4 ((𝜑𝐶 ≠ ∅) → (∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥 ↔ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥))
2322rabbidv 3419 . . 3 ((𝜑𝐶 ≠ ∅) → {𝑥𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
2414, 23eqtrd 2765 . 2 ((𝜑𝐶 ≠ ∅) → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
2513, 24pm2.61dane 3014 1 (𝜑 → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2927  wral 3046  {crab 3411  Vcvv 3455  c0 4304   × cxp 5644  dom cdm 5646  wf 6515  cfv 6519  (class class class)co 7394  Basecbs 17185   GrpAct cga 19227  FixPtscfxp 33128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-map 8805  df-ga 19228  df-fxp 33129
This theorem is referenced by:  isfxp  33133  fxpgaeq  33134  cntrval2  33136
  Copyright terms: Public domain W3C validator