Proof of Theorem fxpgaval
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 = ∅) → 𝐶 = ∅) |
| 2 | 1 | rabeqdv 3427 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 = ∅) → {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = {𝑥 ∈ ∅ ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}) |
| 3 | | rab0 4357 |
. . . 4
⊢ {𝑥 ∈ ∅ ∣
∀𝑝 ∈ dom dom
𝐴(𝑝𝐴𝑥) = 𝑥} = ∅ |
| 4 | 2, 3 | eqtrdi 2781 |
. . 3
⊢ ((𝜑 ∧ 𝐶 = ∅) → {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = ∅) |
| 5 | | fxpgaval.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (𝐺 GrpAct 𝐶)) |
| 6 | | gaset 19231 |
. . . . . 6
⊢ (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐶 ∈ V) |
| 7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ V) |
| 8 | 7, 5 | fxpval 33130 |
. . . 4
⊢ (𝜑 → (𝐶FixPts𝐴) = {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}) |
| 9 | 8 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐶 = ∅) → (𝐶FixPts𝐴) = {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}) |
| 10 | 1 | rabeqdv 3427 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 = ∅) → {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥} = {𝑥 ∈ ∅ ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥}) |
| 11 | | rab0 4357 |
. . . 4
⊢ {𝑥 ∈ ∅ ∣
∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥} = ∅ |
| 12 | 10, 11 | eqtrdi 2781 |
. . 3
⊢ ((𝜑 ∧ 𝐶 = ∅) → {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥} = ∅) |
| 13 | 4, 9, 12 | 3eqtr4d 2775 |
. 2
⊢ ((𝜑 ∧ 𝐶 = ∅) → (𝐶FixPts𝐴) = {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥}) |
| 14 | 8 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ≠ ∅) → (𝐶FixPts𝐴) = {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥}) |
| 15 | | fxpgaval.s |
. . . . . . . . . 10
⊢ 𝑈 = (Base‘𝐺) |
| 16 | 15 | gaf 19233 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐴:(𝑈 × 𝐶)⟶𝐶) |
| 17 | 5, 16 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴:(𝑈 × 𝐶)⟶𝐶) |
| 18 | 17 | fdmd 6705 |
. . . . . . 7
⊢ (𝜑 → dom 𝐴 = (𝑈 × 𝐶)) |
| 19 | 18 | dmeqd 5877 |
. . . . . 6
⊢ (𝜑 → dom dom 𝐴 = dom (𝑈 × 𝐶)) |
| 20 | | dmxp 5900 |
. . . . . 6
⊢ (𝐶 ≠ ∅ → dom (𝑈 × 𝐶) = 𝑈) |
| 21 | 19, 20 | sylan9eq 2785 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ≠ ∅) → dom dom 𝐴 = 𝑈) |
| 22 | 21 | raleqdv 3302 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ≠ ∅) → (∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥 ↔ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥)) |
| 23 | 22 | rabbidv 3419 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ≠ ∅) → {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ dom dom 𝐴(𝑝𝐴𝑥) = 𝑥} = {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥}) |
| 24 | 14, 23 | eqtrd 2765 |
. 2
⊢ ((𝜑 ∧ 𝐶 ≠ ∅) → (𝐶FixPts𝐴) = {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥}) |
| 25 | 13, 24 | pm2.61dane 3014 |
1
⊢ (𝜑 → (𝐶FixPts𝐴) = {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥}) |