| Step | Hyp | Ref
| Expression |
| 1 | | fxpsdrg.1 |
. 2
⊢ (𝜑 → 𝑊 ∈ DivRing) |
| 2 | | fxpsubm.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
| 3 | | fxpsubm.c |
. . 3
⊢ 𝐶 = (Base‘𝑊) |
| 4 | | fxpsubm.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐶 ↦ (𝑝𝐴𝑥)) |
| 5 | | fxpsubm.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ (𝐺 GrpAct 𝐶)) |
| 6 | | fxpsubrg.1 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ (𝑊 RingHom 𝑊)) |
| 7 | 2, 3, 4, 5, 6 | fxpsubrg 33129 |
. 2
⊢ (𝜑 → (𝐶FixPts𝐴) ∈ (SubRing‘𝑊)) |
| 8 | 6 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ (𝑊 RingHom 𝑊)) |
| 9 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) → 𝑊 ∈ DivRing) |
| 10 | 9 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → 𝑊 ∈ DivRing) |
| 11 | | gaset 19190 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐶 ∈ V) |
| 12 | 5, 11 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ V) |
| 13 | 12, 5 | fxpss 33121 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶FixPts𝐴) ⊆ 𝐶) |
| 14 | 13 | ssdifssd 4100 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)}) ⊆ 𝐶) |
| 15 | 14 | sselda 3937 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) → 𝑧 ∈ 𝐶) |
| 16 | 15 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → 𝑧 ∈ 𝐶) |
| 17 | | eldifsni 4744 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)}) → 𝑧 ≠ (0g‘𝑊)) |
| 18 | 17 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) → 𝑧 ≠ (0g‘𝑊)) |
| 19 | 18 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → 𝑧 ≠ (0g‘𝑊)) |
| 20 | | eqid 2729 |
. . . . . . . . . 10
⊢
(Unit‘𝑊) =
(Unit‘𝑊) |
| 21 | | eqid 2729 |
. . . . . . . . . 10
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 22 | 3, 20, 21 | drngunit 20637 |
. . . . . . . . 9
⊢ (𝑊 ∈ DivRing → (𝑧 ∈ (Unit‘𝑊) ↔ (𝑧 ∈ 𝐶 ∧ 𝑧 ≠ (0g‘𝑊)))) |
| 23 | 22 | biimpar 477 |
. . . . . . . 8
⊢ ((𝑊 ∈ DivRing ∧ (𝑧 ∈ 𝐶 ∧ 𝑧 ≠ (0g‘𝑊))) → 𝑧 ∈ (Unit‘𝑊)) |
| 24 | 10, 16, 19, 23 | syl12anc 836 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → 𝑧 ∈ (Unit‘𝑊)) |
| 25 | | rhmunitinv 20414 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑊 RingHom 𝑊) ∧ 𝑧 ∈ (Unit‘𝑊)) → (𝐹‘((invr‘𝑊)‘𝑧)) = ((invr‘𝑊)‘(𝐹‘𝑧))) |
| 26 | 8, 24, 25 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → (𝐹‘((invr‘𝑊)‘𝑧)) = ((invr‘𝑊)‘(𝐹‘𝑧))) |
| 27 | | oveq2 7361 |
. . . . . . 7
⊢ (𝑥 = ((invr‘𝑊)‘𝑧) → (𝑝𝐴𝑥) = (𝑝𝐴((invr‘𝑊)‘𝑧))) |
| 28 | | eqid 2729 |
. . . . . . . . 9
⊢
(invr‘𝑊) = (invr‘𝑊) |
| 29 | 3, 21, 28, 9, 15, 18 | drnginvrcld 20658 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) →
((invr‘𝑊)‘𝑧) ∈ 𝐶) |
| 30 | 29 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → ((invr‘𝑊)‘𝑧) ∈ 𝐶) |
| 31 | | ovexd 7388 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴((invr‘𝑊)‘𝑧)) ∈ V) |
| 32 | 4, 27, 30, 31 | fvmptd3 6957 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → (𝐹‘((invr‘𝑊)‘𝑧)) = (𝑝𝐴((invr‘𝑊)‘𝑧))) |
| 33 | | oveq2 7361 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑝𝐴𝑥) = (𝑝𝐴𝑧)) |
| 34 | | ovexd 7388 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴𝑧) ∈ V) |
| 35 | 4, 33, 16, 34 | fvmptd3 6957 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → (𝐹‘𝑧) = (𝑝𝐴𝑧)) |
| 36 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) → 𝐴 ∈ (𝐺 GrpAct 𝐶)) |
| 37 | 36 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → 𝐴 ∈ (𝐺 GrpAct 𝐶)) |
| 38 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) |
| 39 | 38 | eldifad 3917 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → 𝑧 ∈ (𝐶FixPts𝐴)) |
| 40 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) |
| 41 | 2, 37, 39, 40 | fxpgaeq 33124 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴𝑧) = 𝑧) |
| 42 | 35, 41 | eqtrd 2764 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → (𝐹‘𝑧) = 𝑧) |
| 43 | 42 | fveq2d 6830 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → ((invr‘𝑊)‘(𝐹‘𝑧)) = ((invr‘𝑊)‘𝑧)) |
| 44 | 26, 32, 43 | 3eqtr3d 2772 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴((invr‘𝑊)‘𝑧)) = ((invr‘𝑊)‘𝑧)) |
| 45 | 44 | ralrimiva 3121 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) → ∀𝑝 ∈ 𝐵 (𝑝𝐴((invr‘𝑊)‘𝑧)) = ((invr‘𝑊)‘𝑧)) |
| 46 | 2, 36, 29 | isfxp 33123 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) →
(((invr‘𝑊)‘𝑧) ∈ (𝐶FixPts𝐴) ↔ ∀𝑝 ∈ 𝐵 (𝑝𝐴((invr‘𝑊)‘𝑧)) = ((invr‘𝑊)‘𝑧))) |
| 47 | 45, 46 | mpbird 257 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})) →
((invr‘𝑊)‘𝑧) ∈ (𝐶FixPts𝐴)) |
| 48 | 47 | ralrimiva 3121 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})((invr‘𝑊)‘𝑧) ∈ (𝐶FixPts𝐴)) |
| 49 | 28, 21 | issdrg2 20698 |
. 2
⊢ ((𝐶FixPts𝐴) ∈ (SubDRing‘𝑊) ↔ (𝑊 ∈ DivRing ∧ (𝐶FixPts𝐴) ∈ (SubRing‘𝑊) ∧ ∀𝑧 ∈ ((𝐶FixPts𝐴) ∖ {(0g‘𝑊)})((invr‘𝑊)‘𝑧) ∈ (𝐶FixPts𝐴))) |
| 50 | 1, 7, 48, 49 | syl3anbrc 1344 |
1
⊢ (𝜑 → (𝐶FixPts𝐴) ∈ (SubDRing‘𝑊)) |