| Step | Hyp | Ref
| Expression |
| 1 | | fxpsubm.f |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ 𝐶 ↦ (𝑝𝐴𝑥)) |
| 2 | | oveq1 7360 |
. . . . . . 7
⊢ (𝑝 = (0g‘𝐺) → (𝑝𝐴𝑥) = ((0g‘𝐺)𝐴𝑥)) |
| 3 | 2 | mpteq2dv 5189 |
. . . . . 6
⊢ (𝑝 = (0g‘𝐺) → (𝑥 ∈ 𝐶 ↦ (𝑝𝐴𝑥)) = (𝑥 ∈ 𝐶 ↦ ((0g‘𝐺)𝐴𝑥))) |
| 4 | 1, 3 | eqtrid 2776 |
. . . . 5
⊢ (𝑝 = (0g‘𝐺) → 𝐹 = (𝑥 ∈ 𝐶 ↦ ((0g‘𝐺)𝐴𝑥))) |
| 5 | 4 | eleq1d 2813 |
. . . 4
⊢ (𝑝 = (0g‘𝐺) → (𝐹 ∈ (𝑊 GrpHom 𝑊) ↔ (𝑥 ∈ 𝐶 ↦ ((0g‘𝐺)𝐴𝑥)) ∈ (𝑊 GrpHom 𝑊))) |
| 6 | | fxpsubg.1 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ (𝑊 GrpHom 𝑊)) |
| 7 | 6 | ralrimiva 3121 |
. . . 4
⊢ (𝜑 → ∀𝑝 ∈ 𝐵 𝐹 ∈ (𝑊 GrpHom 𝑊)) |
| 8 | | fxpsubm.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (𝐺 GrpAct 𝐶)) |
| 9 | | gagrp 19189 |
. . . . 5
⊢ (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐺 ∈ Grp) |
| 10 | | fxpsubm.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
| 11 | | eqid 2729 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 12 | 10, 11 | grpidcl 18862 |
. . . . 5
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
| 13 | 8, 9, 12 | 3syl 18 |
. . . 4
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐵) |
| 14 | 5, 7, 13 | rspcdva 3580 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ ((0g‘𝐺)𝐴𝑥)) ∈ (𝑊 GrpHom 𝑊)) |
| 15 | | ghmgrp1 19115 |
. . 3
⊢ ((𝑥 ∈ 𝐶 ↦ ((0g‘𝐺)𝐴𝑥)) ∈ (𝑊 GrpHom 𝑊) → 𝑊 ∈ Grp) |
| 16 | 14, 15 | syl 17 |
. 2
⊢ (𝜑 → 𝑊 ∈ Grp) |
| 17 | | fxpsubm.c |
. . 3
⊢ 𝐶 = (Base‘𝑊) |
| 18 | | ghmmhm 19123 |
. . . 4
⊢ (𝐹 ∈ (𝑊 GrpHom 𝑊) → 𝐹 ∈ (𝑊 MndHom 𝑊)) |
| 19 | 6, 18 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ (𝑊 MndHom 𝑊)) |
| 20 | 10, 17, 1, 8, 19 | fxpsubm 33127 |
. 2
⊢ (𝜑 → (𝐶FixPts𝐴) ∈ (SubMnd‘𝑊)) |
| 21 | 6 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ (𝑊 GrpHom 𝑊)) |
| 22 | | gaset 19190 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝐺 GrpAct 𝐶) → 𝐶 ∈ V) |
| 23 | 8, 22 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ V) |
| 24 | 23, 8 | fxpss 33121 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶FixPts𝐴) ⊆ 𝐶) |
| 25 | 24 | sselda 3937 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) → 𝑧 ∈ 𝐶) |
| 26 | 25 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → 𝑧 ∈ 𝐶) |
| 27 | | eqid 2729 |
. . . . . . . 8
⊢
(invg‘𝑊) = (invg‘𝑊) |
| 28 | 17, 27, 27 | ghminv 19120 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑊 GrpHom 𝑊) ∧ 𝑧 ∈ 𝐶) → (𝐹‘((invg‘𝑊)‘𝑧)) = ((invg‘𝑊)‘(𝐹‘𝑧))) |
| 29 | 21, 26, 28 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝐹‘((invg‘𝑊)‘𝑧)) = ((invg‘𝑊)‘(𝐹‘𝑧))) |
| 30 | | oveq2 7361 |
. . . . . . 7
⊢ (𝑥 = ((invg‘𝑊)‘𝑧) → (𝑝𝐴𝑥) = (𝑝𝐴((invg‘𝑊)‘𝑧))) |
| 31 | 16 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) → 𝑊 ∈ Grp) |
| 32 | 17, 27, 31, 25 | grpinvcld 18885 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) → ((invg‘𝑊)‘𝑧) ∈ 𝐶) |
| 33 | 32 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → ((invg‘𝑊)‘𝑧) ∈ 𝐶) |
| 34 | | ovexd 7388 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴((invg‘𝑊)‘𝑧)) ∈ V) |
| 35 | 1, 30, 33, 34 | fvmptd3 6957 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝐹‘((invg‘𝑊)‘𝑧)) = (𝑝𝐴((invg‘𝑊)‘𝑧))) |
| 36 | | oveq2 7361 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑝𝐴𝑥) = (𝑝𝐴𝑧)) |
| 37 | | ovexd 7388 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴𝑧) ∈ V) |
| 38 | 1, 36, 26, 37 | fvmptd3 6957 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝐹‘𝑧) = (𝑝𝐴𝑧)) |
| 39 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) → 𝐴 ∈ (𝐺 GrpAct 𝐶)) |
| 40 | 39 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → 𝐴 ∈ (𝐺 GrpAct 𝐶)) |
| 41 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → 𝑧 ∈ (𝐶FixPts𝐴)) |
| 42 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) |
| 43 | 10, 40, 41, 42 | fxpgaeq 33124 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴𝑧) = 𝑧) |
| 44 | 38, 43 | eqtrd 2764 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝐹‘𝑧) = 𝑧) |
| 45 | 44 | fveq2d 6830 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → ((invg‘𝑊)‘(𝐹‘𝑧)) = ((invg‘𝑊)‘𝑧)) |
| 46 | 29, 35, 45 | 3eqtr3d 2772 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) ∧ 𝑝 ∈ 𝐵) → (𝑝𝐴((invg‘𝑊)‘𝑧)) = ((invg‘𝑊)‘𝑧)) |
| 47 | 46 | ralrimiva 3121 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) → ∀𝑝 ∈ 𝐵 (𝑝𝐴((invg‘𝑊)‘𝑧)) = ((invg‘𝑊)‘𝑧)) |
| 48 | 10, 39, 32 | isfxp 33123 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) → (((invg‘𝑊)‘𝑧) ∈ (𝐶FixPts𝐴) ↔ ∀𝑝 ∈ 𝐵 (𝑝𝐴((invg‘𝑊)‘𝑧)) = ((invg‘𝑊)‘𝑧))) |
| 49 | 47, 48 | mpbird 257 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐶FixPts𝐴)) → ((invg‘𝑊)‘𝑧) ∈ (𝐶FixPts𝐴)) |
| 50 | 49 | ralrimiva 3121 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ (𝐶FixPts𝐴)((invg‘𝑊)‘𝑧) ∈ (𝐶FixPts𝐴)) |
| 51 | 27 | issubg3 19041 |
. . 3
⊢ (𝑊 ∈ Grp → ((𝐶FixPts𝐴) ∈ (SubGrp‘𝑊) ↔ ((𝐶FixPts𝐴) ∈ (SubMnd‘𝑊) ∧ ∀𝑧 ∈ (𝐶FixPts𝐴)((invg‘𝑊)‘𝑧) ∈ (𝐶FixPts𝐴)))) |
| 52 | 51 | biimpar 477 |
. 2
⊢ ((𝑊 ∈ Grp ∧ ((𝐶FixPts𝐴) ∈ (SubMnd‘𝑊) ∧ ∀𝑧 ∈ (𝐶FixPts𝐴)((invg‘𝑊)‘𝑧) ∈ (𝐶FixPts𝐴))) → (𝐶FixPts𝐴) ∈ (SubGrp‘𝑊)) |
| 53 | 16, 20, 50, 52 | syl12anc 836 |
1
⊢ (𝜑 → (𝐶FixPts𝐴) ∈ (SubGrp‘𝑊)) |