Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gtnelicc | Structured version Visualization version GIF version |
Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
gtnelicc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
gtnelicc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
gtnelicc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
gtnelicc.bltc | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
gtnelicc | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gtnelicc.bltc | . . . 4 ⊢ (𝜑 → 𝐵 < 𝐶) | |
2 | gtnelicc.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 2 | rexrd 11131 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
4 | gtnelicc.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
5 | xrltnle 11148 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) | |
6 | 3, 4, 5 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) |
7 | 1, 6 | mpbid 231 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ≤ 𝐵) |
8 | 7 | intnand 490 | . 2 ⊢ (𝜑 → ¬ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
9 | gtnelicc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
10 | elicc4 13252 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
11 | 9, 3, 4, 10 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
12 | 8, 11 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2106 class class class wbr 5097 (class class class)co 7342 ℝcr 10976 ℝ*cxr 11114 < clt 11115 ≤ cle 11116 [,]cicc 13188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-iota 6436 df-fun 6486 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-xr 11119 df-le 11121 df-icc 13192 |
This theorem is referenced by: fourierdlem103 44136 |
Copyright terms: Public domain | W3C validator |