![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gtnelicc | Structured version Visualization version GIF version |
Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
gtnelicc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
gtnelicc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
gtnelicc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
gtnelicc.bltc | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
gtnelicc | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gtnelicc.bltc | . . . 4 ⊢ (𝜑 → 𝐵 < 𝐶) | |
2 | gtnelicc.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 2 | rexrd 11264 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
4 | gtnelicc.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
5 | xrltnle 11281 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) | |
6 | 3, 4, 5 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) |
7 | 1, 6 | mpbid 231 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ≤ 𝐵) |
8 | 7 | intnand 490 | . 2 ⊢ (𝜑 → ¬ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
9 | gtnelicc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
10 | elicc4 13391 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
11 | 9, 3, 4, 10 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
12 | 8, 11 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 ℝcr 11109 ℝ*cxr 11247 < clt 11248 ≤ cle 11249 [,]cicc 13327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-xr 11252 df-le 11254 df-icc 13331 |
This theorem is referenced by: fourierdlem103 44925 |
Copyright terms: Public domain | W3C validator |