Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gtnelicc Structured version   Visualization version   GIF version

Theorem gtnelicc 43424
Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
gtnelicc.a (𝜑𝐴 ∈ ℝ*)
gtnelicc.b (𝜑𝐵 ∈ ℝ)
gtnelicc.c (𝜑𝐶 ∈ ℝ*)
gtnelicc.bltc (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
gtnelicc (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem gtnelicc
StepHypRef Expression
1 gtnelicc.bltc . . . 4 (𝜑𝐵 < 𝐶)
2 gtnelicc.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
32rexrd 11131 . . . . 5 (𝜑𝐵 ∈ ℝ*)
4 gtnelicc.c . . . . 5 (𝜑𝐶 ∈ ℝ*)
5 xrltnle 11148 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
63, 4, 5syl2anc 585 . . . 4 (𝜑 → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
71, 6mpbid 231 . . 3 (𝜑 → ¬ 𝐶𝐵)
87intnand 490 . 2 (𝜑 → ¬ (𝐴𝐶𝐶𝐵))
9 gtnelicc.a . . 3 (𝜑𝐴 ∈ ℝ*)
10 elicc4 13252 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
119, 3, 4, 10syl3anc 1371 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
128, 11mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2106   class class class wbr 5097  (class class class)co 7342  cr 10976  *cxr 11114   < clt 11115  cle 11116  [,]cicc 13188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3732  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-iota 6436  df-fun 6486  df-fv 6492  df-ov 7345  df-oprab 7346  df-mpo 7347  df-xr 11119  df-le 11121  df-icc 13192
This theorem is referenced by:  fourierdlem103  44136
  Copyright terms: Public domain W3C validator