| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gtnelicc | Structured version Visualization version GIF version | ||
| Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| gtnelicc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| gtnelicc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| gtnelicc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| gtnelicc.bltc | ⊢ (𝜑 → 𝐵 < 𝐶) |
| Ref | Expression |
|---|---|
| gtnelicc | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gtnelicc.bltc | . . . 4 ⊢ (𝜑 → 𝐵 < 𝐶) | |
| 2 | gtnelicc.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 2 | rexrd 11294 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 4 | gtnelicc.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 5 | xrltnle 11311 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) |
| 7 | 1, 6 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ≤ 𝐵) |
| 8 | 7 | intnand 488 | . 2 ⊢ (𝜑 → ¬ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 9 | gtnelicc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 10 | elicc4 13437 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 11 | 9, 3, 4, 10 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 12 | 8, 11 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 class class class wbr 5125 (class class class)co 7414 ℝcr 11137 ℝ*cxr 11277 < clt 11278 ≤ cle 11279 [,]cicc 13373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-xr 11282 df-le 11284 df-icc 13377 |
| This theorem is referenced by: fourierdlem103 46169 |
| Copyright terms: Public domain | W3C validator |