Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gtnelicc Structured version   Visualization version   GIF version

Theorem gtnelicc 45548
Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
gtnelicc.a (𝜑𝐴 ∈ ℝ*)
gtnelicc.b (𝜑𝐵 ∈ ℝ)
gtnelicc.c (𝜑𝐶 ∈ ℝ*)
gtnelicc.bltc (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
gtnelicc (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem gtnelicc
StepHypRef Expression
1 gtnelicc.bltc . . . 4 (𝜑𝐵 < 𝐶)
2 gtnelicc.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
32rexrd 11162 . . . . 5 (𝜑𝐵 ∈ ℝ*)
4 gtnelicc.c . . . . 5 (𝜑𝐶 ∈ ℝ*)
5 xrltnle 11179 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
63, 4, 5syl2anc 584 . . . 4 (𝜑 → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
71, 6mpbid 232 . . 3 (𝜑 → ¬ 𝐶𝐵)
87intnand 488 . 2 (𝜑 → ¬ (𝐴𝐶𝐶𝐵))
9 gtnelicc.a . . 3 (𝜑𝐴 ∈ ℝ*)
10 elicc4 13313 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
119, 3, 4, 10syl3anc 1373 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
128, 11mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5089  (class class class)co 7346  cr 11005  *cxr 11145   < clt 11146  cle 11147  [,]cicc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-xr 11150  df-le 11152  df-icc 13252
This theorem is referenced by:  fourierdlem103  46255
  Copyright terms: Public domain W3C validator