Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gtnelicc Structured version   Visualization version   GIF version

Theorem gtnelicc 45458
Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
gtnelicc.a (𝜑𝐴 ∈ ℝ*)
gtnelicc.b (𝜑𝐵 ∈ ℝ)
gtnelicc.c (𝜑𝐶 ∈ ℝ*)
gtnelicc.bltc (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
gtnelicc (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))

Proof of Theorem gtnelicc
StepHypRef Expression
1 gtnelicc.bltc . . . 4 (𝜑𝐵 < 𝐶)
2 gtnelicc.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
32rexrd 11294 . . . . 5 (𝜑𝐵 ∈ ℝ*)
4 gtnelicc.c . . . . 5 (𝜑𝐶 ∈ ℝ*)
5 xrltnle 11311 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
63, 4, 5syl2anc 584 . . . 4 (𝜑 → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
71, 6mpbid 232 . . 3 (𝜑 → ¬ 𝐶𝐵)
87intnand 488 . 2 (𝜑 → ¬ (𝐴𝐶𝐶𝐵))
9 gtnelicc.a . . 3 (𝜑𝐴 ∈ ℝ*)
10 elicc4 13437 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
119, 3, 4, 10syl3anc 1372 . 2 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴𝐶𝐶𝐵)))
128, 11mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2107   class class class wbr 5125  (class class class)co 7414  cr 11137  *cxr 11277   < clt 11278  cle 11279  [,]cicc 13373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-xr 11282  df-le 11284  df-icc 13377
This theorem is referenced by:  fourierdlem103  46169
  Copyright terms: Public domain W3C validator