Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gtnelicc | Structured version Visualization version GIF version |
Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
gtnelicc.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
gtnelicc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
gtnelicc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
gtnelicc.bltc | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
gtnelicc | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gtnelicc.bltc | . . . 4 ⊢ (𝜑 → 𝐵 < 𝐶) | |
2 | gtnelicc.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 2 | rexrd 10956 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
4 | gtnelicc.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
5 | xrltnle 10973 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) | |
6 | 3, 4, 5 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) |
7 | 1, 6 | mpbid 231 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ≤ 𝐵) |
8 | 7 | intnand 488 | . 2 ⊢ (𝜑 → ¬ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
9 | gtnelicc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
10 | elicc4 13075 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
11 | 9, 3, 4, 10 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
12 | 8, 11 | mtbird 324 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-xr 10944 df-le 10946 df-icc 13015 |
This theorem is referenced by: fourierdlem103 43640 |
Copyright terms: Public domain | W3C validator |