![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iooabslt | Structured version Visualization version GIF version |
Description: An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iooabslt.1 | β’ (π β π΄ β β) |
iooabslt.2 | β’ (π β π΅ β β) |
iooabslt.3 | β’ (π β πΆ β ((π΄ β π΅)(,)(π΄ + π΅))) |
Ref | Expression |
---|---|
iooabslt | β’ (π β (absβ(π΄ β πΆ)) < π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooabslt.1 | . . . 4 β’ (π β π΄ β β) | |
2 | 1 | recnd 11282 | . . 3 β’ (π β π΄ β β) |
3 | iooabslt.3 | . . . . 5 β’ (π β πΆ β ((π΄ β π΅)(,)(π΄ + π΅))) | |
4 | elioore 13396 | . . . . 5 β’ (πΆ β ((π΄ β π΅)(,)(π΄ + π΅)) β πΆ β β) | |
5 | 3, 4 | syl 17 | . . . 4 β’ (π β πΆ β β) |
6 | 5 | recnd 11282 | . . 3 β’ (π β πΆ β β) |
7 | eqid 2728 | . . . 4 β’ (abs β β ) = (abs β β ) | |
8 | 7 | cnmetdval 24715 | . . 3 β’ ((π΄ β β β§ πΆ β β) β (π΄(abs β β )πΆ) = (absβ(π΄ β πΆ))) |
9 | 2, 6, 8 | syl2anc 582 | . 2 β’ (π β (π΄(abs β β )πΆ) = (absβ(π΄ β πΆ))) |
10 | iooabslt.2 | . . . . . . . . 9 β’ (π β π΅ β β) | |
11 | eqid 2728 | . . . . . . . . . 10 β’ ((abs β β ) βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) | |
12 | 11 | bl2ioo 24736 | . . . . . . . . 9 β’ ((π΄ β β β§ π΅ β β) β (π΄(ballβ((abs β β ) βΎ (β Γ β)))π΅) = ((π΄ β π΅)(,)(π΄ + π΅))) |
13 | 1, 10, 12 | syl2anc 582 | . . . . . . . 8 β’ (π β (π΄(ballβ((abs β β ) βΎ (β Γ β)))π΅) = ((π΄ β π΅)(,)(π΄ + π΅))) |
14 | 3, 13 | eleqtrrd 2832 | . . . . . . 7 β’ (π β πΆ β (π΄(ballβ((abs β β ) βΎ (β Γ β)))π΅)) |
15 | cnxmet 24717 | . . . . . . . . 9 β’ (abs β β ) β (βMetββ) | |
16 | 15 | a1i 11 | . . . . . . . 8 β’ (π β (abs β β ) β (βMetββ)) |
17 | 2, 1 | elind 4196 | . . . . . . . 8 β’ (π β π΄ β (β β© β)) |
18 | 10 | rexrd 11304 | . . . . . . . 8 β’ (π β π΅ β β*) |
19 | 11 | blres 24365 | . . . . . . . 8 β’ (((abs β β ) β (βMetββ) β§ π΄ β (β β© β) β§ π΅ β β*) β (π΄(ballβ((abs β β ) βΎ (β Γ β)))π΅) = ((π΄(ballβ(abs β β ))π΅) β© β)) |
20 | 16, 17, 18, 19 | syl3anc 1368 | . . . . . . 7 β’ (π β (π΄(ballβ((abs β β ) βΎ (β Γ β)))π΅) = ((π΄(ballβ(abs β β ))π΅) β© β)) |
21 | 14, 20 | eleqtrd 2831 | . . . . . 6 β’ (π β πΆ β ((π΄(ballβ(abs β β ))π΅) β© β)) |
22 | elin 3965 | . . . . . 6 β’ (πΆ β ((π΄(ballβ(abs β β ))π΅) β© β) β (πΆ β (π΄(ballβ(abs β β ))π΅) β§ πΆ β β)) | |
23 | 21, 22 | sylib 217 | . . . . 5 β’ (π β (πΆ β (π΄(ballβ(abs β β ))π΅) β§ πΆ β β)) |
24 | 23 | simpld 493 | . . . 4 β’ (π β πΆ β (π΄(ballβ(abs β β ))π΅)) |
25 | elbl 24322 | . . . . 5 β’ (((abs β β ) β (βMetββ) β§ π΄ β β β§ π΅ β β*) β (πΆ β (π΄(ballβ(abs β β ))π΅) β (πΆ β β β§ (π΄(abs β β )πΆ) < π΅))) | |
26 | 16, 2, 18, 25 | syl3anc 1368 | . . . 4 β’ (π β (πΆ β (π΄(ballβ(abs β β ))π΅) β (πΆ β β β§ (π΄(abs β β )πΆ) < π΅))) |
27 | 24, 26 | mpbid 231 | . . 3 β’ (π β (πΆ β β β§ (π΄(abs β β )πΆ) < π΅)) |
28 | 27 | simprd 494 | . 2 β’ (π β (π΄(abs β β )πΆ) < π΅) |
29 | 9, 28 | eqbrtrrd 5176 | 1 β’ (π β (absβ(π΄ β πΆ)) < π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β© cin 3948 class class class wbr 5152 Γ cxp 5680 βΎ cres 5684 β ccom 5686 βcfv 6553 (class class class)co 7426 βcc 11146 βcr 11147 + caddc 11151 β*cxr 11287 < clt 11288 β cmin 11484 (,)cioo 13366 abscabs 15223 βMetcxmet 21278 ballcbl 21280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-map 8855 df-en 8973 df-dom 8974 df-sdom 8975 df-sup 9475 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-n0 12513 df-z 12599 df-uz 12863 df-rp 13017 df-xadd 13135 df-ioo 13370 df-seq 14009 df-exp 14069 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 |
This theorem is referenced by: lptre2pt 45075 |
Copyright terms: Public domain | W3C validator |