| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iooabslt | Structured version Visualization version GIF version | ||
| Description: An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| iooabslt.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| iooabslt.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| iooabslt.3 | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
| Ref | Expression |
|---|---|
| iooabslt | ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooabslt.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | recnd 11162 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | iooabslt.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) | |
| 4 | elioore 13296 | . . . . 5 ⊢ (𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) → 𝐶 ∈ ℝ) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 6 | 5 | recnd 11162 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 7 | eqid 2729 | . . . 4 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
| 8 | 7 | cnmetdval 24674 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴 − 𝐶))) |
| 9 | 2, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴 − 𝐶))) |
| 10 | iooabslt.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 11 | eqid 2729 | . . . . . . . . . 10 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 12 | 11 | bl2ioo 24696 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
| 13 | 1, 10, 12 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
| 14 | 3, 13 | eleqtrrd 2831 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵)) |
| 15 | cnxmet 24676 | . . . . . . . . 9 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ)) |
| 17 | 2, 1 | elind 4153 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∩ ℝ)) |
| 18 | 10 | rexrd 11184 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 19 | 11 | blres 24335 | . . . . . . . 8 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ (ℂ ∩ ℝ) ∧ 𝐵 ∈ ℝ*) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ)) |
| 20 | 16, 17, 18, 19 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ)) |
| 21 | 14, 20 | eleqtrd 2830 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ)) |
| 22 | elin 3921 | . . . . . 6 ⊢ (𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ) ↔ (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ)) | |
| 23 | 21, 22 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ)) |
| 24 | 23 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵)) |
| 25 | elbl 24292 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵))) | |
| 26 | 16, 2, 18, 25 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵))) |
| 27 | 24, 26 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵)) |
| 28 | 27 | simprd 495 | . 2 ⊢ (𝜑 → (𝐴(abs ∘ − )𝐶) < 𝐵) |
| 29 | 9, 28 | eqbrtrrd 5119 | 1 ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 class class class wbr 5095 × cxp 5621 ↾ cres 5625 ∘ ccom 5627 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 + caddc 11031 ℝ*cxr 11167 < clt 11168 − cmin 11365 (,)cioo 13266 abscabs 15159 ∞Metcxmet 21264 ballcbl 21266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-xadd 13033 df-ioo 13270 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 |
| This theorem is referenced by: lptre2pt 45622 |
| Copyright terms: Public domain | W3C validator |