![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iooabslt | Structured version Visualization version GIF version |
Description: An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iooabslt.1 | β’ (π β π΄ β β) |
iooabslt.2 | β’ (π β π΅ β β) |
iooabslt.3 | β’ (π β πΆ β ((π΄ β π΅)(,)(π΄ + π΅))) |
Ref | Expression |
---|---|
iooabslt | β’ (π β (absβ(π΄ β πΆ)) < π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooabslt.1 | . . . 4 β’ (π β π΄ β β) | |
2 | 1 | recnd 11238 | . . 3 β’ (π β π΄ β β) |
3 | iooabslt.3 | . . . . 5 β’ (π β πΆ β ((π΄ β π΅)(,)(π΄ + π΅))) | |
4 | elioore 13350 | . . . . 5 β’ (πΆ β ((π΄ β π΅)(,)(π΄ + π΅)) β πΆ β β) | |
5 | 3, 4 | syl 17 | . . . 4 β’ (π β πΆ β β) |
6 | 5 | recnd 11238 | . . 3 β’ (π β πΆ β β) |
7 | eqid 2732 | . . . 4 β’ (abs β β ) = (abs β β ) | |
8 | 7 | cnmetdval 24278 | . . 3 β’ ((π΄ β β β§ πΆ β β) β (π΄(abs β β )πΆ) = (absβ(π΄ β πΆ))) |
9 | 2, 6, 8 | syl2anc 584 | . 2 β’ (π β (π΄(abs β β )πΆ) = (absβ(π΄ β πΆ))) |
10 | iooabslt.2 | . . . . . . . . 9 β’ (π β π΅ β β) | |
11 | eqid 2732 | . . . . . . . . . 10 β’ ((abs β β ) βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) | |
12 | 11 | bl2ioo 24299 | . . . . . . . . 9 β’ ((π΄ β β β§ π΅ β β) β (π΄(ballβ((abs β β ) βΎ (β Γ β)))π΅) = ((π΄ β π΅)(,)(π΄ + π΅))) |
13 | 1, 10, 12 | syl2anc 584 | . . . . . . . 8 β’ (π β (π΄(ballβ((abs β β ) βΎ (β Γ β)))π΅) = ((π΄ β π΅)(,)(π΄ + π΅))) |
14 | 3, 13 | eleqtrrd 2836 | . . . . . . 7 β’ (π β πΆ β (π΄(ballβ((abs β β ) βΎ (β Γ β)))π΅)) |
15 | cnxmet 24280 | . . . . . . . . 9 β’ (abs β β ) β (βMetββ) | |
16 | 15 | a1i 11 | . . . . . . . 8 β’ (π β (abs β β ) β (βMetββ)) |
17 | 2, 1 | elind 4193 | . . . . . . . 8 β’ (π β π΄ β (β β© β)) |
18 | 10 | rexrd 11260 | . . . . . . . 8 β’ (π β π΅ β β*) |
19 | 11 | blres 23928 | . . . . . . . 8 β’ (((abs β β ) β (βMetββ) β§ π΄ β (β β© β) β§ π΅ β β*) β (π΄(ballβ((abs β β ) βΎ (β Γ β)))π΅) = ((π΄(ballβ(abs β β ))π΅) β© β)) |
20 | 16, 17, 18, 19 | syl3anc 1371 | . . . . . . 7 β’ (π β (π΄(ballβ((abs β β ) βΎ (β Γ β)))π΅) = ((π΄(ballβ(abs β β ))π΅) β© β)) |
21 | 14, 20 | eleqtrd 2835 | . . . . . 6 β’ (π β πΆ β ((π΄(ballβ(abs β β ))π΅) β© β)) |
22 | elin 3963 | . . . . . 6 β’ (πΆ β ((π΄(ballβ(abs β β ))π΅) β© β) β (πΆ β (π΄(ballβ(abs β β ))π΅) β§ πΆ β β)) | |
23 | 21, 22 | sylib 217 | . . . . 5 β’ (π β (πΆ β (π΄(ballβ(abs β β ))π΅) β§ πΆ β β)) |
24 | 23 | simpld 495 | . . . 4 β’ (π β πΆ β (π΄(ballβ(abs β β ))π΅)) |
25 | elbl 23885 | . . . . 5 β’ (((abs β β ) β (βMetββ) β§ π΄ β β β§ π΅ β β*) β (πΆ β (π΄(ballβ(abs β β ))π΅) β (πΆ β β β§ (π΄(abs β β )πΆ) < π΅))) | |
26 | 16, 2, 18, 25 | syl3anc 1371 | . . . 4 β’ (π β (πΆ β (π΄(ballβ(abs β β ))π΅) β (πΆ β β β§ (π΄(abs β β )πΆ) < π΅))) |
27 | 24, 26 | mpbid 231 | . . 3 β’ (π β (πΆ β β β§ (π΄(abs β β )πΆ) < π΅)) |
28 | 27 | simprd 496 | . 2 β’ (π β (π΄(abs β β )πΆ) < π΅) |
29 | 9, 28 | eqbrtrrd 5171 | 1 β’ (π β (absβ(π΄ β πΆ)) < π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β© cin 3946 class class class wbr 5147 Γ cxp 5673 βΎ cres 5677 β ccom 5679 βcfv 6540 (class class class)co 7405 βcc 11104 βcr 11105 + caddc 11109 β*cxr 11243 < clt 11244 β cmin 11440 (,)cioo 13320 abscabs 15177 βMetcxmet 20921 ballcbl 20923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-xadd 13089 df-ioo 13324 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 |
This theorem is referenced by: lptre2pt 44342 |
Copyright terms: Public domain | W3C validator |