Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iooabslt | Structured version Visualization version GIF version |
Description: An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iooabslt.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
iooabslt.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
iooabslt.3 | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
Ref | Expression |
---|---|
iooabslt | ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooabslt.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 10934 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | iooabslt.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) | |
4 | elioore 13038 | . . . . 5 ⊢ (𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) → 𝐶 ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | 5 | recnd 10934 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
7 | eqid 2738 | . . . 4 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
8 | 7 | cnmetdval 23840 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴 − 𝐶))) |
9 | 2, 6, 8 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴 − 𝐶))) |
10 | iooabslt.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
11 | eqid 2738 | . . . . . . . . . 10 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
12 | 11 | bl2ioo 23861 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
13 | 1, 10, 12 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
14 | 3, 13 | eleqtrrd 2842 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵)) |
15 | cnxmet 23842 | . . . . . . . . 9 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ)) |
17 | 2, 1 | elind 4124 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∩ ℝ)) |
18 | 10 | rexrd 10956 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
19 | 11 | blres 23492 | . . . . . . . 8 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ (ℂ ∩ ℝ) ∧ 𝐵 ∈ ℝ*) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ)) |
20 | 16, 17, 18, 19 | syl3anc 1369 | . . . . . . 7 ⊢ (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ)) |
21 | 14, 20 | eleqtrd 2841 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ)) |
22 | elin 3899 | . . . . . 6 ⊢ (𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ) ↔ (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ)) | |
23 | 21, 22 | sylib 217 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ)) |
24 | 23 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵)) |
25 | elbl 23449 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵))) | |
26 | 16, 2, 18, 25 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵))) |
27 | 24, 26 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵)) |
28 | 27 | simprd 495 | . 2 ⊢ (𝜑 → (𝐴(abs ∘ − )𝐶) < 𝐵) |
29 | 9, 28 | eqbrtrrd 5094 | 1 ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 class class class wbr 5070 × cxp 5578 ↾ cres 5582 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 + caddc 10805 ℝ*cxr 10939 < clt 10940 − cmin 11135 (,)cioo 13008 abscabs 14873 ∞Metcxmet 20495 ballcbl 20497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-xadd 12778 df-ioo 13012 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 |
This theorem is referenced by: lptre2pt 43071 |
Copyright terms: Public domain | W3C validator |