Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooabslt Structured version   Visualization version   GIF version

Theorem iooabslt 43037
Description: An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iooabslt.1 (𝜑𝐴 ∈ ℝ)
iooabslt.2 (𝜑𝐵 ∈ ℝ)
iooabslt.3 (𝜑𝐶 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)))
Assertion
Ref Expression
iooabslt (𝜑 → (abs‘(𝐴𝐶)) < 𝐵)

Proof of Theorem iooabslt
StepHypRef Expression
1 iooabslt.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21recnd 11003 . . 3 (𝜑𝐴 ∈ ℂ)
3 iooabslt.3 . . . . 5 (𝜑𝐶 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)))
4 elioore 13109 . . . . 5 (𝐶 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)) → 𝐶 ∈ ℝ)
53, 4syl 17 . . . 4 (𝜑𝐶 ∈ ℝ)
65recnd 11003 . . 3 (𝜑𝐶 ∈ ℂ)
7 eqid 2738 . . . 4 (abs ∘ − ) = (abs ∘ − )
87cnmetdval 23934 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴𝐶)))
92, 6, 8syl2anc 584 . 2 (𝜑 → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴𝐶)))
10 iooabslt.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
11 eqid 2738 . . . . . . . . . 10 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
1211bl2ioo 23955 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))
131, 10, 12syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))
143, 13eleqtrrd 2842 . . . . . . 7 (𝜑𝐶 ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵))
15 cnxmet 23936 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
1615a1i 11 . . . . . . . 8 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
172, 1elind 4128 . . . . . . . 8 (𝜑𝐴 ∈ (ℂ ∩ ℝ))
1810rexrd 11025 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1911blres 23584 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ (ℂ ∩ ℝ) ∧ 𝐵 ∈ ℝ*) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ))
2016, 17, 18, 19syl3anc 1370 . . . . . . 7 (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ))
2114, 20eleqtrd 2841 . . . . . 6 (𝜑𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ))
22 elin 3903 . . . . . 6 (𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ) ↔ (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ))
2321, 22sylib 217 . . . . 5 (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ))
2423simpld 495 . . . 4 (𝜑𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵))
25 elbl 23541 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵)))
2616, 2, 18, 25syl3anc 1370 . . . 4 (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵)))
2724, 26mpbid 231 . . 3 (𝜑 → (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵))
2827simprd 496 . 2 (𝜑 → (𝐴(abs ∘ − )𝐶) < 𝐵)
299, 28eqbrtrrd 5098 1 (𝜑 → (abs‘(𝐴𝐶)) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cin 3886   class class class wbr 5074   × cxp 5587  cres 5591  ccom 5593  cfv 6433  (class class class)co 7275  cc 10869  cr 10870   + caddc 10874  *cxr 11008   < clt 11009  cmin 11205  (,)cioo 13079  abscabs 14945  ∞Metcxmet 20582  ballcbl 20584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-ioo 13083  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592
This theorem is referenced by:  lptre2pt  43181
  Copyright terms: Public domain W3C validator