![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iooabslt | Structured version Visualization version GIF version |
Description: An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iooabslt.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
iooabslt.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
iooabslt.3 | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
Ref | Expression |
---|---|
iooabslt | ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooabslt.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 11183 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | iooabslt.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) | |
4 | elioore 13294 | . . . . 5 ⊢ (𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) → 𝐶 ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | 5 | recnd 11183 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
7 | eqid 2736 | . . . 4 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
8 | 7 | cnmetdval 24134 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴 − 𝐶))) |
9 | 2, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴 − 𝐶))) |
10 | iooabslt.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
11 | eqid 2736 | . . . . . . . . . 10 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
12 | 11 | bl2ioo 24155 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
13 | 1, 10, 12 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
14 | 3, 13 | eleqtrrd 2841 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵)) |
15 | cnxmet 24136 | . . . . . . . . 9 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ)) |
17 | 2, 1 | elind 4154 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∩ ℝ)) |
18 | 10 | rexrd 11205 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
19 | 11 | blres 23784 | . . . . . . . 8 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ (ℂ ∩ ℝ) ∧ 𝐵 ∈ ℝ*) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ)) |
20 | 16, 17, 18, 19 | syl3anc 1371 | . . . . . . 7 ⊢ (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ)) |
21 | 14, 20 | eleqtrd 2840 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ)) |
22 | elin 3926 | . . . . . 6 ⊢ (𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ) ↔ (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ)) | |
23 | 21, 22 | sylib 217 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ)) |
24 | 23 | simpld 495 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵)) |
25 | elbl 23741 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵))) | |
26 | 16, 2, 18, 25 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵))) |
27 | 24, 26 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵)) |
28 | 27 | simprd 496 | . 2 ⊢ (𝜑 → (𝐴(abs ∘ − )𝐶) < 𝐵) |
29 | 9, 28 | eqbrtrrd 5129 | 1 ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3909 class class class wbr 5105 × cxp 5631 ↾ cres 5635 ∘ ccom 5637 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 ℝcr 11050 + caddc 11054 ℝ*cxr 11188 < clt 11189 − cmin 11385 (,)cioo 13264 abscabs 15119 ∞Metcxmet 20781 ballcbl 20783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-sup 9378 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-xadd 13034 df-ioo 13268 df-seq 13907 df-exp 13968 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 |
This theorem is referenced by: lptre2pt 43871 |
Copyright terms: Public domain | W3C validator |