Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iooabslt | Structured version Visualization version GIF version |
Description: An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iooabslt.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
iooabslt.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
iooabslt.3 | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
Ref | Expression |
---|---|
iooabslt | ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooabslt.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 11003 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | iooabslt.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) | |
4 | elioore 13109 | . . . . 5 ⊢ (𝐶 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) → 𝐶 ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | 5 | recnd 11003 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
7 | eqid 2738 | . . . 4 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
8 | 7 | cnmetdval 23934 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴 − 𝐶))) |
9 | 2, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴 − 𝐶))) |
10 | iooabslt.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
11 | eqid 2738 | . . . . . . . . . 10 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
12 | 11 | bl2ioo 23955 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
13 | 1, 10, 12 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
14 | 3, 13 | eleqtrrd 2842 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵)) |
15 | cnxmet 23936 | . . . . . . . . 9 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ)) |
17 | 2, 1 | elind 4128 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∩ ℝ)) |
18 | 10 | rexrd 11025 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
19 | 11 | blres 23584 | . . . . . . . 8 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ (ℂ ∩ ℝ) ∧ 𝐵 ∈ ℝ*) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ)) |
20 | 16, 17, 18, 19 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ)) |
21 | 14, 20 | eleqtrd 2841 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ)) |
22 | elin 3903 | . . . . . 6 ⊢ (𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ) ↔ (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ)) | |
23 | 21, 22 | sylib 217 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ)) |
24 | 23 | simpld 495 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵)) |
25 | elbl 23541 | . . . . 5 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵))) | |
26 | 16, 2, 18, 25 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵))) |
27 | 24, 26 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵)) |
28 | 27 | simprd 496 | . 2 ⊢ (𝜑 → (𝐴(abs ∘ − )𝐶) < 𝐵) |
29 | 9, 28 | eqbrtrrd 5098 | 1 ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 class class class wbr 5074 × cxp 5587 ↾ cres 5591 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 + caddc 10874 ℝ*cxr 11008 < clt 11009 − cmin 11205 (,)cioo 13079 abscabs 14945 ∞Metcxmet 20582 ballcbl 20584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-xadd 12849 df-ioo 13083 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 |
This theorem is referenced by: lptre2pt 43181 |
Copyright terms: Public domain | W3C validator |