Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooabslt Structured version   Visualization version   GIF version

Theorem iooabslt 43727
Description: An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iooabslt.1 (𝜑𝐴 ∈ ℝ)
iooabslt.2 (𝜑𝐵 ∈ ℝ)
iooabslt.3 (𝜑𝐶 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)))
Assertion
Ref Expression
iooabslt (𝜑 → (abs‘(𝐴𝐶)) < 𝐵)

Proof of Theorem iooabslt
StepHypRef Expression
1 iooabslt.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21recnd 11183 . . 3 (𝜑𝐴 ∈ ℂ)
3 iooabslt.3 . . . . 5 (𝜑𝐶 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)))
4 elioore 13294 . . . . 5 (𝐶 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)) → 𝐶 ∈ ℝ)
53, 4syl 17 . . . 4 (𝜑𝐶 ∈ ℝ)
65recnd 11183 . . 3 (𝜑𝐶 ∈ ℂ)
7 eqid 2736 . . . 4 (abs ∘ − ) = (abs ∘ − )
87cnmetdval 24134 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴𝐶)))
92, 6, 8syl2anc 584 . 2 (𝜑 → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴𝐶)))
10 iooabslt.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
11 eqid 2736 . . . . . . . . . 10 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
1211bl2ioo 24155 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))
131, 10, 12syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))
143, 13eleqtrrd 2841 . . . . . . 7 (𝜑𝐶 ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵))
15 cnxmet 24136 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
1615a1i 11 . . . . . . . 8 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
172, 1elind 4154 . . . . . . . 8 (𝜑𝐴 ∈ (ℂ ∩ ℝ))
1810rexrd 11205 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1911blres 23784 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ (ℂ ∩ ℝ) ∧ 𝐵 ∈ ℝ*) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ))
2016, 17, 18, 19syl3anc 1371 . . . . . . 7 (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ))
2114, 20eleqtrd 2840 . . . . . 6 (𝜑𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ))
22 elin 3926 . . . . . 6 (𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ) ↔ (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ))
2321, 22sylib 217 . . . . 5 (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ))
2423simpld 495 . . . 4 (𝜑𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵))
25 elbl 23741 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵)))
2616, 2, 18, 25syl3anc 1371 . . . 4 (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵)))
2724, 26mpbid 231 . . 3 (𝜑 → (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵))
2827simprd 496 . 2 (𝜑 → (𝐴(abs ∘ − )𝐶) < 𝐵)
299, 28eqbrtrrd 5129 1 (𝜑 → (abs‘(𝐴𝐶)) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cin 3909   class class class wbr 5105   × cxp 5631  cres 5635  ccom 5637  cfv 6496  (class class class)co 7357  cc 11049  cr 11050   + caddc 11054  *cxr 11188   < clt 11189  cmin 11385  (,)cioo 13264  abscabs 15119  ∞Metcxmet 20781  ballcbl 20783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-xadd 13034  df-ioo 13268  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791
This theorem is referenced by:  lptre2pt  43871
  Copyright terms: Public domain W3C validator