Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21c Structured version   Visualization version   GIF version

Theorem cdleme21c 40446
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 28-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l = (le‘𝐾)
cdleme21.j = (join‘𝐾)
cdleme21.m = (meet‘𝐾)
cdleme21.a 𝐴 = (Atoms‘𝐾)
cdleme21.h 𝐻 = (LHyp‘𝐾)
cdleme21.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme21c ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑈 (𝑆 𝑧))

Proof of Theorem cdleme21c
StepHypRef Expression
1 simp23 1209 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑆 (𝑃 𝑄))
2 simp11l 1285 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝐾 ∈ HL)
3 hlcvl 39478 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
42, 3syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝐾 ∈ CvLat)
5 simp12l 1287 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑃𝐴)
6 simp21 1207 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑆𝐴)
7 simp3l 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑧𝐴)
8 simp13 1206 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑄𝐴)
9 cdleme21.l . . . . . . . . 9 = (le‘𝐾)
10 cdleme21.j . . . . . . . . 9 = (join‘𝐾)
11 cdleme21.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
129, 10, 11atnlej1 39498 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝑃)
1312necomd 2984 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝑆)
142, 6, 5, 8, 1, 13syl131anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑃𝑆)
15 simp3r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑧) = (𝑆 𝑧))
1611, 10cvlsupr7 39467 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑆𝐴𝑧𝐴) ∧ (𝑃𝑆 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑆) = (𝑧 𝑆))
174, 5, 6, 7, 14, 15, 16syl132anc 1390 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑆) = (𝑧 𝑆))
1810, 11hlatjcom 39487 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑧𝐴𝑆𝐴) → (𝑧 𝑆) = (𝑆 𝑧))
192, 7, 6, 18syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑧 𝑆) = (𝑆 𝑧))
2017, 19eqtrd 2768 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑆) = (𝑆 𝑧))
2120breq2d 5105 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 (𝑃 𝑆) ↔ 𝑈 (𝑆 𝑧)))
22 simp11r 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑊𝐻)
23 simp12r 1288 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑃 𝑊)
24 simp22 1208 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑃𝑄)
25 cdleme21.m . . . . . . 7 = (meet‘𝐾)
26 cdleme21.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
27 cdleme21.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
289, 10, 25, 11, 26, 27cdleme0a 40330 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
292, 22, 5, 23, 8, 24, 28syl222anc 1388 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈𝐴)
302hllatd 39483 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝐾 ∈ Lat)
31 eqid 2733 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
3231, 10, 11hlatjcl 39486 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
332, 5, 8, 32syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑄) ∈ (Base‘𝐾))
3431, 26lhpbase 40117 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3522, 34syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑊 ∈ (Base‘𝐾))
3631, 9, 25latmle2 18373 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
3730, 33, 35, 36syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ((𝑃 𝑄) 𝑊) 𝑊)
3827, 37eqbrtrid 5128 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈 𝑊)
39 nbrne2 5113 . . . . . 6 ((𝑈 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑈𝑃)
4038, 23, 39syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈𝑃)
419, 10, 11cvlatexch1 39455 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑆𝐴𝑃𝐴) ∧ 𝑈𝑃) → (𝑈 (𝑃 𝑆) → 𝑆 (𝑃 𝑈)))
424, 29, 6, 5, 40, 41syl131anc 1385 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 (𝑃 𝑆) → 𝑆 (𝑃 𝑈)))
439, 10, 11hlatlej1 39494 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
442, 5, 8, 43syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑃 (𝑃 𝑄))
459, 10, 25, 11, 26, 27cdlemeulpq 40339 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑈 (𝑃 𝑄))
462, 22, 5, 8, 45syl22anc 838 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈 (𝑃 𝑄))
4731, 11atbase 39408 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
485, 47syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑃 ∈ (Base‘𝐾))
4931, 11atbase 39408 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
5029, 49syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈 ∈ (Base‘𝐾))
5131, 9, 10latjle12 18358 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑄) ∧ 𝑈 (𝑃 𝑄)) ↔ (𝑃 𝑈) (𝑃 𝑄)))
5230, 48, 50, 33, 51syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ((𝑃 (𝑃 𝑄) ∧ 𝑈 (𝑃 𝑄)) ↔ (𝑃 𝑈) (𝑃 𝑄)))
5344, 46, 52mpbi2and 712 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑈) (𝑃 𝑄))
5431, 11atbase 39408 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
556, 54syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑆 ∈ (Base‘𝐾))
5631, 10, 11hlatjcl 39486 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
572, 5, 29, 56syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑈) ∈ (Base‘𝐾))
5831, 9lattr 18352 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝑃 𝑈) ∧ (𝑃 𝑈) (𝑃 𝑄)) → 𝑆 (𝑃 𝑄)))
5930, 55, 57, 33, 58syl13anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ((𝑆 (𝑃 𝑈) ∧ (𝑃 𝑈) (𝑃 𝑄)) → 𝑆 (𝑃 𝑄)))
6053, 59mpan2d 694 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑆 (𝑃 𝑈) → 𝑆 (𝑃 𝑄)))
6142, 60syld 47 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 (𝑃 𝑆) → 𝑆 (𝑃 𝑄)))
6221, 61sylbird 260 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 (𝑆 𝑧) → 𝑆 (𝑃 𝑄)))
631, 62mtod 198 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑈 (𝑆 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  joincjn 18219  meetcmee 18220  Latclat 18339  Atomscatm 39382  CvLatclc 39384  HLchlt 39469  LHypclh 40103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-p1 18332  df-lat 18340  df-clat 18407  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-lhyp 40107
This theorem is referenced by:  cdleme21at  40447  cdleme21ct  40448  cdleme21d  40449
  Copyright terms: Public domain W3C validator