Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlexch3 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the exchange property. (atexch 30771 analog.) (Contributed by NM, 15-Nov-2011.) |
Ref | Expression |
---|---|
hlexch3.b | ⊢ 𝐵 = (Base‘𝐾) |
hlexch3.l | ⊢ ≤ = (le‘𝐾) |
hlexch3.j | ⊢ ∨ = (join‘𝐾) |
hlexch3.m | ⊢ ∧ = (meet‘𝐾) |
hlexch3.z | ⊢ 0 = (0.‘𝐾) |
hlexch3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlexch3 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 37399 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | hlexch3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | hlexch3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | hlexch3.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
5 | hlexch3.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
6 | hlexch3.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
7 | hlexch3.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | 2, 3, 4, 5, 6, 7 | cvlexch3 37372 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
9 | 1, 8 | syl3an1 1161 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 Basecbs 16940 lecple 16997 joincjn 18057 meetcmee 18058 0.cp0 18169 Atomscatm 37303 CvLatclc 37305 HLchlt 37390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-proset 18041 df-poset 18059 df-plt 18076 df-lub 18092 df-glb 18093 df-join 18094 df-meet 18095 df-p0 18171 df-lat 18178 df-covers 37306 df-ats 37307 df-atl 37338 df-cvlat 37362 df-hlat 37391 |
This theorem is referenced by: cvrat4 37483 |
Copyright terms: Public domain | W3C validator |