|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlexch3 | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice has the exchange property. (atexch 32401 analog.) (Contributed by NM, 15-Nov-2011.) | 
| Ref | Expression | 
|---|---|
| hlexch3.b | ⊢ 𝐵 = (Base‘𝐾) | 
| hlexch3.l | ⊢ ≤ = (le‘𝐾) | 
| hlexch3.j | ⊢ ∨ = (join‘𝐾) | 
| hlexch3.m | ⊢ ∧ = (meet‘𝐾) | 
| hlexch3.z | ⊢ 0 = (0.‘𝐾) | 
| hlexch3.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| Ref | Expression | 
|---|---|
| hlexch3 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlcvl 39361 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
| 2 | hlexch3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | hlexch3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | hlexch3.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 5 | hlexch3.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 6 | hlexch3.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 7 | hlexch3.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | 2, 3, 4, 5, 6, 7 | cvlexch3 39334 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | 
| 9 | 1, 8 | syl3an1 1163 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 lecple 17305 joincjn 18358 meetcmee 18359 0.cp0 18469 Atomscatm 39265 CvLatclc 39267 HLchlt 39352 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-lat 18478 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 | 
| This theorem is referenced by: cvrat4 39446 | 
| Copyright terms: Public domain | W3C validator |