Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatexch2 | Structured version Visualization version GIF version |
Description: Atom exchange property. (Contributed by NM, 8-Jan-2012.) |
Ref | Expression |
---|---|
hlatexchb.l | ⊢ ≤ = (le‘𝐾) |
hlatexchb.j | ⊢ ∨ = (join‘𝐾) |
hlatexchb.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatexch2 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) → 𝑄 ≤ (𝑃 ∨ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 36928 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | hlatexchb.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | hlatexchb.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | hlatexchb.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 2, 3, 4 | cvlatexch2 36906 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) → 𝑄 ≤ (𝑃 ∨ 𝑅))) |
6 | 1, 5 | syl3an1 1161 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) → 𝑄 ≤ (𝑃 ∨ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 lecple 16623 joincjn 17613 Atomscatm 36832 CvLatclc 36834 HLchlt 36919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-proset 17597 df-poset 17615 df-plt 17627 df-lub 17643 df-glb 17644 df-join 17645 df-meet 17646 df-p0 17708 df-lat 17715 df-covers 36835 df-ats 36836 df-atl 36867 df-cvlat 36891 df-hlat 36920 |
This theorem is referenced by: 2llnneN 36978 atexchcvrN 37009 atbtwnex 37017 3dimlem3 37030 3dimlem3OLDN 37031 3dimlem4 37033 3dimlem4OLDN 37034 hlatexch4 37050 3atlem5 37056 dalem27 37268 cdlemblem 37362 paddasslem1 37389 paddasslem6 37394 cdleme3g 37803 cdleme3h 37804 cdleme7d 37815 cdleme11c 37830 cdleme11dN 37831 cdleme36a 38029 cdlemeg46rgv 38097 cdlemk14 38423 dia2dimlem1 38633 dia2dimlem2 38634 dia2dimlem3 38635 |
Copyright terms: Public domain | W3C validator |