![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatexch2 | Structured version Visualization version GIF version |
Description: Atom exchange property. (Contributed by NM, 8-Jan-2012.) |
Ref | Expression |
---|---|
hlatexchb.l | β’ β€ = (leβπΎ) |
hlatexchb.j | β’ β¨ = (joinβπΎ) |
hlatexchb.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
hlatexch2 | β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π ) β π β€ (π β¨ π ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 38887 | . 2 β’ (πΎ β HL β πΎ β CvLat) | |
2 | hlatexchb.l | . . 3 β’ β€ = (leβπΎ) | |
3 | hlatexchb.j | . . 3 β’ β¨ = (joinβπΎ) | |
4 | hlatexchb.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
5 | 2, 3, 4 | cvlatexch2 38865 | . 2 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π ) β π β€ (π β¨ π ))) |
6 | 1, 5 | syl3an1 1160 | 1 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π ) β π β€ (π β¨ π ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 class class class wbr 5143 βcfv 6543 (class class class)co 7416 lecple 17239 joincjn 18302 Atomscatm 38791 CvLatclc 38793 HLchlt 38878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-lat 18423 df-covers 38794 df-ats 38795 df-atl 38826 df-cvlat 38850 df-hlat 38879 |
This theorem is referenced by: 2llnneN 38938 atexchcvrN 38969 atbtwnex 38977 3dimlem3 38990 3dimlem3OLDN 38991 3dimlem4 38993 3dimlem4OLDN 38994 hlatexch4 39010 3atlem5 39016 dalem27 39228 cdlemblem 39322 paddasslem1 39349 paddasslem6 39354 cdleme3g 39763 cdleme3h 39764 cdleme7d 39775 cdleme11c 39790 cdleme11dN 39791 cdleme36a 39989 cdlemeg46rgv 40057 cdlemk14 40383 dia2dimlem1 40593 dia2dimlem2 40594 dia2dimlem3 40595 |
Copyright terms: Public domain | W3C validator |