Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatexch2 | Structured version Visualization version GIF version |
Description: Atom exchange property. (Contributed by NM, 8-Jan-2012.) |
Ref | Expression |
---|---|
hlatexchb.l | ⊢ ≤ = (le‘𝐾) |
hlatexchb.j | ⊢ ∨ = (join‘𝐾) |
hlatexchb.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatexch2 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) → 𝑄 ≤ (𝑃 ∨ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 37373 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | hlatexchb.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | hlatexchb.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | hlatexchb.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 2, 3, 4 | cvlatexch2 37351 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) → 𝑄 ≤ (𝑃 ∨ 𝑅))) |
6 | 1, 5 | syl3an1 1162 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) → 𝑄 ≤ (𝑃 ∨ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 lecple 16969 joincjn 18029 Atomscatm 37277 CvLatclc 37279 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 |
This theorem is referenced by: 2llnneN 37423 atexchcvrN 37454 atbtwnex 37462 3dimlem3 37475 3dimlem3OLDN 37476 3dimlem4 37478 3dimlem4OLDN 37479 hlatexch4 37495 3atlem5 37501 dalem27 37713 cdlemblem 37807 paddasslem1 37834 paddasslem6 37839 cdleme3g 38248 cdleme3h 38249 cdleme7d 38260 cdleme11c 38275 cdleme11dN 38276 cdleme36a 38474 cdlemeg46rgv 38542 cdlemk14 38868 dia2dimlem1 39078 dia2dimlem2 39079 dia2dimlem3 39080 |
Copyright terms: Public domain | W3C validator |