![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlexch4N | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the exchange property. Part of Definition 7.8 of [MaedaMaeda] p. 32. (Contributed by NM, 15-Nov-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlexch3.b | ⊢ 𝐵 = (Base‘𝐾) |
hlexch3.l | ⊢ ≤ = (le‘𝐾) |
hlexch3.j | ⊢ ∨ = (join‘𝐾) |
hlexch3.m | ⊢ ∧ = (meet‘𝐾) |
hlexch3.z | ⊢ 0 = (0.‘𝐾) |
hlexch3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlexch4N | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 39070 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | hlexch3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | hlexch3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | hlexch3.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
5 | hlexch3.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
6 | hlexch3.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
7 | hlexch3.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | 2, 3, 4, 5, 6, 7 | cvlexch4N 39044 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
9 | 1, 8 | syl3an1 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5145 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 lecple 17268 joincjn 18331 meetcmee 18332 0.cp0 18443 Atomscatm 38974 CvLatclc 38976 HLchlt 39061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-proset 18315 df-poset 18333 df-plt 18350 df-lub 18366 df-glb 18367 df-join 18368 df-meet 18369 df-p0 18445 df-lat 18452 df-covers 38977 df-ats 38978 df-atl 39009 df-cvlat 39033 df-hlat 39062 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |