Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2lem Structured version   Visualization version   GIF version

Theorem llnexchb2lem 39825
Description: Lemma for llnexchb2 39826. (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l = (le‘𝐾)
llnexch.j = (join‘𝐾)
llnexch.m = (meet‘𝐾)
llnexch.a 𝐴 = (Atoms‘𝐾)
llnexch.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnexchb2lem (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑋 𝑌) = (𝑋 (𝑃 𝑄))))

Proof of Theorem llnexchb2lem
StepHypRef Expression
1 simpl11 1248 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ HL)
2 simpl21 1251 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑃𝐴)
3 simpl12 1249 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑋𝑁)
4 eqid 2740 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
5 llnexch.n . . . . . . . 8 𝑁 = (LLines‘𝐾)
64, 5llnbase 39466 . . . . . . 7 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
73, 6syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑋 ∈ (Base‘𝐾))
81hllatd 39320 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ Lat)
9 simpl13 1250 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑌𝑁)
104, 5llnbase 39466 . . . . . . . 8 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
119, 10syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑌 ∈ (Base‘𝐾))
12 llnexch.m . . . . . . . 8 = (meet‘𝐾)
134, 12latmcl 18510 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
148, 7, 11, 13syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) ∈ (Base‘𝐾))
15 llnexch.l . . . . . . . 8 = (le‘𝐾)
164, 15, 12latmle1 18534 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) 𝑋)
178, 7, 11, 16syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) 𝑋)
18 llnexch.j . . . . . . 7 = (join‘𝐾)
19 llnexch.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
204, 15, 18, 12, 19atmod2i2 39819 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ (𝑋 𝑌) 𝑋) → ((𝑋 𝑃) (𝑋 𝑌)) = (𝑋 (𝑃 (𝑋 𝑌))))
211, 2, 7, 14, 17, 20syl131anc 1383 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ((𝑋 𝑃) (𝑋 𝑌)) = (𝑋 (𝑃 (𝑋 𝑌))))
224, 19atbase 39245 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
232, 22syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑃 ∈ (Base‘𝐾))
244, 12latmcom 18533 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑋 𝑃) = (𝑃 𝑋))
258, 7, 23, 24syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑃) = (𝑃 𝑋))
26 simpl23 1253 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ¬ 𝑃 𝑋)
27 hlatl 39316 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
281, 27syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ AtLat)
29 eqid 2740 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
304, 15, 12, 29, 19atnle 39273 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋 ∈ (Base‘𝐾)) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = (0.‘𝐾)))
3128, 2, 7, 30syl3anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = (0.‘𝐾)))
3226, 31mpbid 232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑃 𝑋) = (0.‘𝐾))
3325, 32eqtrd 2780 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑃) = (0.‘𝐾))
3433oveq1d 7463 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ((𝑋 𝑃) (𝑋 𝑌)) = ((0.‘𝐾) (𝑋 𝑌)))
35 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) (𝑃 𝑄))
36 hlcvl 39315 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
371, 36syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ CvLat)
38 simpl3 1193 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) ∈ 𝐴)
39 simpl22 1252 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑄𝐴)
40 breq1 5169 . . . . . . . . . . . 12 (𝑃 = (𝑋 𝑌) → (𝑃 𝑋 ↔ (𝑋 𝑌) 𝑋))
4117, 40syl5ibrcom 247 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑃 = (𝑋 𝑌) → 𝑃 𝑋))
4241necon3bd 2960 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (¬ 𝑃 𝑋𝑃 ≠ (𝑋 𝑌)))
4326, 42mpd 15 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑃 ≠ (𝑋 𝑌))
4443necomd 3002 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) ≠ 𝑃)
4515, 18, 19cvlatexchb1 39290 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ ((𝑋 𝑌) ∈ 𝐴𝑄𝐴𝑃𝐴) ∧ (𝑋 𝑌) ≠ 𝑃) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑃 (𝑋 𝑌)) = (𝑃 𝑄)))
4637, 38, 39, 2, 44, 45syl131anc 1383 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑃 (𝑋 𝑌)) = (𝑃 𝑄)))
4735, 46mpbid 232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑃 (𝑋 𝑌)) = (𝑃 𝑄))
4847oveq2d 7464 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 (𝑃 (𝑋 𝑌))) = (𝑋 (𝑃 𝑄)))
4921, 34, 483eqtr3rd 2789 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 (𝑃 𝑄)) = ((0.‘𝐾) (𝑋 𝑌)))
50 hlol 39317 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
511, 50syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ OL)
524, 18, 29olj02 39182 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) → ((0.‘𝐾) (𝑋 𝑌)) = (𝑋 𝑌))
5351, 14, 52syl2anc 583 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ((0.‘𝐾) (𝑋 𝑌)) = (𝑋 𝑌))
5449, 53eqtr2d 2781 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) = (𝑋 (𝑃 𝑄)))
5554ex 412 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑃 𝑄) → (𝑋 𝑌) = (𝑋 (𝑃 𝑄))))
56 simp11 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ HL)
5756hllatd 39320 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ Lat)
58 simp12 1204 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑋𝑁)
5958, 6syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑋 ∈ (Base‘𝐾))
60 simp21 1206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑃𝐴)
61 simp22 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑄𝐴)
624, 18, 19hlatjcl 39323 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
6356, 60, 61, 62syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
644, 15, 12latmle2 18535 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑋 (𝑃 𝑄)) (𝑃 𝑄))
6557, 59, 63, 64syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 (𝑃 𝑄)) (𝑃 𝑄))
66 breq1 5169 . . 3 ((𝑋 𝑌) = (𝑋 (𝑃 𝑄)) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑋 (𝑃 𝑄)) (𝑃 𝑄)))
6765, 66syl5ibrcom 247 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) = (𝑋 (𝑃 𝑄)) → (𝑋 𝑌) (𝑃 𝑄)))
6855, 67impbid 212 1 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑋 𝑌) = (𝑋 (𝑃 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  0.cp0 18493  Latclat 18501  OLcol 39130  Atomscatm 39219  AtLatcal 39220  CvLatclc 39221  HLchlt 39306  LLinesclln 39448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-psubsp 39460  df-pmap 39461  df-padd 39753
This theorem is referenced by:  llnexchb2  39826
  Copyright terms: Public domain W3C validator