Proof of Theorem llnexchb2lem
Step | Hyp | Ref
| Expression |
1 | | simpl11 1247 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ HL) |
2 | | simpl21 1250 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ 𝐴) |
3 | | simpl12 1248 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑋 ∈ 𝑁) |
4 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
5 | | llnexch.n |
. . . . . . . 8
⊢ 𝑁 = (LLines‘𝐾) |
6 | 4, 5 | llnbase 37523 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
7 | 3, 6 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑋 ∈ (Base‘𝐾)) |
8 | 1 | hllatd 37378 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ Lat) |
9 | | simpl13 1249 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑌 ∈ 𝑁) |
10 | 4, 5 | llnbase 37523 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
11 | 9, 10 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑌 ∈ (Base‘𝐾)) |
12 | | llnexch.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
13 | 4, 12 | latmcl 18158 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
14 | 8, 7, 11, 13 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
15 | | llnexch.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
16 | 4, 15, 12 | latmle1 18182 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
17 | 8, 7, 11, 16 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
18 | | llnexch.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
19 | | llnexch.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
20 | 4, 15, 18, 12, 19 | atmod2i2 37876 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) ∧ (𝑋 ∧ 𝑌) ≤ 𝑋) → ((𝑋 ∧ 𝑃) ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
21 | 1, 2, 7, 14, 17, 20 | syl131anc 1382 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ((𝑋 ∧ 𝑃) ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
22 | 4, 19 | atbase 37303 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
23 | 2, 22 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ (Base‘𝐾)) |
24 | 4, 12 | latmcom 18181 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑃) = (𝑃 ∧ 𝑋)) |
25 | 8, 7, 23, 24 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑃) = (𝑃 ∧ 𝑋)) |
26 | | simpl23 1252 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑃 ≤ 𝑋) |
27 | | hlatl 37374 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
28 | 1, 27 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ AtLat) |
29 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0.‘𝐾) =
(0.‘𝐾) |
30 | 4, 15, 12, 29, 19 | atnle 37331 |
. . . . . . . . 9
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ (Base‘𝐾)) → (¬ 𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = (0.‘𝐾))) |
31 | 28, 2, 7, 30 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (¬ 𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = (0.‘𝐾))) |
32 | 26, 31 | mpbid 231 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∧ 𝑋) = (0.‘𝐾)) |
33 | 25, 32 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑃) = (0.‘𝐾)) |
34 | 33 | oveq1d 7290 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ((𝑋 ∧ 𝑃) ∨ (𝑋 ∧ 𝑌)) = ((0.‘𝐾) ∨ (𝑋 ∧ 𝑌))) |
35 | | simpr 485 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) |
36 | | hlcvl 37373 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
37 | 1, 36 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ CvLat) |
38 | | simpl3 1192 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ∈ 𝐴) |
39 | | simpl22 1251 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
40 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑃 = (𝑋 ∧ 𝑌) → (𝑃 ≤ 𝑋 ↔ (𝑋 ∧ 𝑌) ≤ 𝑋)) |
41 | 17, 40 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑃 = (𝑋 ∧ 𝑌) → 𝑃 ≤ 𝑋)) |
42 | 41 | necon3bd 2957 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (¬ 𝑃 ≤ 𝑋 → 𝑃 ≠ (𝑋 ∧ 𝑌))) |
43 | 26, 42 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ (𝑋 ∧ 𝑌)) |
44 | 43 | necomd 2999 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ≠ 𝑃) |
45 | 15, 18, 19 | cvlatexchb1 37348 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≠ 𝑃) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑃 ∨ 𝑄))) |
46 | 37, 38, 39, 2, 44, 45 | syl131anc 1382 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑃 ∨ 𝑄))) |
47 | 35, 46 | mpbid 231 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑃 ∨ 𝑄)) |
48 | 47 | oveq2d 7291 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ (𝑋 ∧ 𝑌))) = (𝑋 ∧ (𝑃 ∨ 𝑄))) |
49 | 21, 34, 48 | 3eqtr3rd 2787 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) = ((0.‘𝐾) ∨ (𝑋 ∧ 𝑌))) |
50 | | hlol 37375 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
51 | 1, 50 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ OL) |
52 | 4, 18, 29 | olj02 37240 |
. . . . 5
⊢ ((𝐾 ∈ OL ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) → ((0.‘𝐾) ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ 𝑌)) |
53 | 51, 14, 52 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ((0.‘𝐾) ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ 𝑌)) |
54 | 49, 53 | eqtr2d 2779 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄))) |
55 | 54 | ex 413 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) → (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)))) |
56 | | simp11 1202 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝐾 ∈ HL) |
57 | 56 | hllatd 37378 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝐾 ∈ Lat) |
58 | | simp12 1203 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝑋 ∈ 𝑁) |
59 | 58, 6 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝑋 ∈ (Base‘𝐾)) |
60 | | simp21 1205 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝑃 ∈ 𝐴) |
61 | | simp22 1206 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝑄 ∈ 𝐴) |
62 | 4, 18, 19 | hlatjcl 37381 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
63 | 56, 60, 61, 62 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
64 | 4, 15, 12 | latmle2 18183 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄)) |
65 | 57, 59, 63, 64 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄)) |
66 | | breq1 5077 |
. . 3
⊢ ((𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑋 ∧ (𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄))) |
67 | 65, 66 | syl5ibrcom 246 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄))) |
68 | 55, 67 | impbid 211 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)))) |