Proof of Theorem llnexchb2lem
| Step | Hyp | Ref
| Expression |
| 1 | | simpl11 1249 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ HL) |
| 2 | | simpl21 1252 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ 𝐴) |
| 3 | | simpl12 1250 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑋 ∈ 𝑁) |
| 4 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 5 | | llnexch.n |
. . . . . . . 8
⊢ 𝑁 = (LLines‘𝐾) |
| 6 | 4, 5 | llnbase 39511 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
| 7 | 3, 6 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑋 ∈ (Base‘𝐾)) |
| 8 | 1 | hllatd 39365 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ Lat) |
| 9 | | simpl13 1251 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑌 ∈ 𝑁) |
| 10 | 4, 5 | llnbase 39511 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
| 11 | 9, 10 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑌 ∈ (Base‘𝐾)) |
| 12 | | llnexch.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
| 13 | 4, 12 | latmcl 18485 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
| 14 | 8, 7, 11, 13 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
| 15 | | llnexch.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
| 16 | 4, 15, 12 | latmle1 18509 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
| 17 | 8, 7, 11, 16 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
| 18 | | llnexch.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
| 19 | | llnexch.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 20 | 4, 15, 18, 12, 19 | atmod2i2 39864 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) ∧ (𝑋 ∧ 𝑌) ≤ 𝑋) → ((𝑋 ∧ 𝑃) ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
| 21 | 1, 2, 7, 14, 17, 20 | syl131anc 1385 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ((𝑋 ∧ 𝑃) ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
| 22 | 4, 19 | atbase 39290 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 23 | 2, 22 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ (Base‘𝐾)) |
| 24 | 4, 12 | latmcom 18508 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑃) = (𝑃 ∧ 𝑋)) |
| 25 | 8, 7, 23, 24 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑃) = (𝑃 ∧ 𝑋)) |
| 26 | | simpl23 1254 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑃 ≤ 𝑋) |
| 27 | | hlatl 39361 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 28 | 1, 27 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ AtLat) |
| 29 | | eqid 2737 |
. . . . . . . . . 10
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 30 | 4, 15, 12, 29, 19 | atnle 39318 |
. . . . . . . . 9
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ (Base‘𝐾)) → (¬ 𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = (0.‘𝐾))) |
| 31 | 28, 2, 7, 30 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (¬ 𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = (0.‘𝐾))) |
| 32 | 26, 31 | mpbid 232 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∧ 𝑋) = (0.‘𝐾)) |
| 33 | 25, 32 | eqtrd 2777 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑃) = (0.‘𝐾)) |
| 34 | 33 | oveq1d 7446 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ((𝑋 ∧ 𝑃) ∨ (𝑋 ∧ 𝑌)) = ((0.‘𝐾) ∨ (𝑋 ∧ 𝑌))) |
| 35 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) |
| 36 | | hlcvl 39360 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| 37 | 1, 36 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ CvLat) |
| 38 | | simpl3 1194 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ∈ 𝐴) |
| 39 | | simpl22 1253 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
| 40 | | breq1 5146 |
. . . . . . . . . . . 12
⊢ (𝑃 = (𝑋 ∧ 𝑌) → (𝑃 ≤ 𝑋 ↔ (𝑋 ∧ 𝑌) ≤ 𝑋)) |
| 41 | 17, 40 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑃 = (𝑋 ∧ 𝑌) → 𝑃 ≤ 𝑋)) |
| 42 | 41 | necon3bd 2954 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (¬ 𝑃 ≤ 𝑋 → 𝑃 ≠ (𝑋 ∧ 𝑌))) |
| 43 | 26, 42 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ (𝑋 ∧ 𝑌)) |
| 44 | 43 | necomd 2996 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ≠ 𝑃) |
| 45 | 15, 18, 19 | cvlatexchb1 39335 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≠ 𝑃) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑃 ∨ 𝑄))) |
| 46 | 37, 38, 39, 2, 44, 45 | syl131anc 1385 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑃 ∨ 𝑄))) |
| 47 | 35, 46 | mpbid 232 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑃 ∨ 𝑄)) |
| 48 | 47 | oveq2d 7447 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ (𝑋 ∧ 𝑌))) = (𝑋 ∧ (𝑃 ∨ 𝑄))) |
| 49 | 21, 34, 48 | 3eqtr3rd 2786 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) = ((0.‘𝐾) ∨ (𝑋 ∧ 𝑌))) |
| 50 | | hlol 39362 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 51 | 1, 50 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ OL) |
| 52 | 4, 18, 29 | olj02 39227 |
. . . . 5
⊢ ((𝐾 ∈ OL ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) → ((0.‘𝐾) ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ 𝑌)) |
| 53 | 51, 14, 52 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → ((0.‘𝐾) ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ 𝑌)) |
| 54 | 49, 53 | eqtr2d 2778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) ∧ (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄))) |
| 55 | 54 | ex 412 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) → (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)))) |
| 56 | | simp11 1204 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝐾 ∈ HL) |
| 57 | 56 | hllatd 39365 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝐾 ∈ Lat) |
| 58 | | simp12 1205 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝑋 ∈ 𝑁) |
| 59 | 58, 6 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝑋 ∈ (Base‘𝐾)) |
| 60 | | simp21 1207 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝑃 ∈ 𝐴) |
| 61 | | simp22 1208 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝑄 ∈ 𝐴) |
| 62 | 4, 18, 19 | hlatjcl 39368 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 63 | 56, 60, 61, 62 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 64 | 4, 15, 12 | latmle2 18510 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄)) |
| 65 | 57, 59, 63, 64 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄)) |
| 66 | | breq1 5146 |
. . 3
⊢ ((𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑋 ∧ (𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄))) |
| 67 | 65, 66 | syl5ibrcom 247 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)) → (𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄))) |
| 68 | 55, 67 | impbid 212 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)))) |