Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2lem Structured version   Visualization version   GIF version

Theorem llnexchb2lem 35645
Description: Lemma for llnexchb2 35646. (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l = (le‘𝐾)
llnexch.j = (join‘𝐾)
llnexch.m = (meet‘𝐾)
llnexch.a 𝐴 = (Atoms‘𝐾)
llnexch.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnexchb2lem (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑋 𝑌) = (𝑋 (𝑃 𝑄))))

Proof of Theorem llnexchb2lem
StepHypRef Expression
1 simpl11 1322 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ HL)
2 simpl21 1328 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑃𝐴)
3 simpl12 1324 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑋𝑁)
4 eqid 2805 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
5 llnexch.n . . . . . . . 8 𝑁 = (LLines‘𝐾)
64, 5llnbase 35286 . . . . . . 7 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
73, 6syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑋 ∈ (Base‘𝐾))
81hllatd 35141 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ Lat)
9 simpl13 1326 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑌𝑁)
104, 5llnbase 35286 . . . . . . . 8 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
119, 10syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑌 ∈ (Base‘𝐾))
12 llnexch.m . . . . . . . 8 = (meet‘𝐾)
134, 12latmcl 17253 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
148, 7, 11, 13syl3anc 1483 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) ∈ (Base‘𝐾))
15 llnexch.l . . . . . . . 8 = (le‘𝐾)
164, 15, 12latmle1 17277 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) 𝑋)
178, 7, 11, 16syl3anc 1483 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) 𝑋)
18 llnexch.j . . . . . . 7 = (join‘𝐾)
19 llnexch.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
204, 15, 18, 12, 19atmod2i2 35639 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ (𝑋 𝑌) 𝑋) → ((𝑋 𝑃) (𝑋 𝑌)) = (𝑋 (𝑃 (𝑋 𝑌))))
211, 2, 7, 14, 17, 20syl131anc 1495 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ((𝑋 𝑃) (𝑋 𝑌)) = (𝑋 (𝑃 (𝑋 𝑌))))
224, 19atbase 35066 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
232, 22syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑃 ∈ (Base‘𝐾))
244, 12latmcom 17276 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑋 𝑃) = (𝑃 𝑋))
258, 7, 23, 24syl3anc 1483 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑃) = (𝑃 𝑋))
26 simpl23 1332 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ¬ 𝑃 𝑋)
27 hlatl 35137 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
281, 27syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ AtLat)
29 eqid 2805 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
304, 15, 12, 29, 19atnle 35094 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋 ∈ (Base‘𝐾)) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = (0.‘𝐾)))
3128, 2, 7, 30syl3anc 1483 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = (0.‘𝐾)))
3226, 31mpbid 223 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑃 𝑋) = (0.‘𝐾))
3325, 32eqtrd 2839 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑃) = (0.‘𝐾))
3433oveq1d 6886 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ((𝑋 𝑃) (𝑋 𝑌)) = ((0.‘𝐾) (𝑋 𝑌)))
35 simpr 473 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) (𝑃 𝑄))
36 hlcvl 35136 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
371, 36syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ CvLat)
38 simpl3 1239 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) ∈ 𝐴)
39 simpl22 1330 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑄𝐴)
40 breq1 4843 . . . . . . . . . . . 12 (𝑃 = (𝑋 𝑌) → (𝑃 𝑋 ↔ (𝑋 𝑌) 𝑋))
4117, 40syl5ibrcom 238 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑃 = (𝑋 𝑌) → 𝑃 𝑋))
4241necon3bd 2991 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (¬ 𝑃 𝑋𝑃 ≠ (𝑋 𝑌)))
4326, 42mpd 15 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑃 ≠ (𝑋 𝑌))
4443necomd 3032 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) ≠ 𝑃)
4515, 18, 19cvlatexchb1 35111 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ ((𝑋 𝑌) ∈ 𝐴𝑄𝐴𝑃𝐴) ∧ (𝑋 𝑌) ≠ 𝑃) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑃 (𝑋 𝑌)) = (𝑃 𝑄)))
4637, 38, 39, 2, 44, 45syl131anc 1495 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑃 (𝑋 𝑌)) = (𝑃 𝑄)))
4735, 46mpbid 223 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑃 (𝑋 𝑌)) = (𝑃 𝑄))
4847oveq2d 6887 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 (𝑃 (𝑋 𝑌))) = (𝑋 (𝑃 𝑄)))
4921, 34, 483eqtr3rd 2848 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 (𝑃 𝑄)) = ((0.‘𝐾) (𝑋 𝑌)))
50 hlol 35138 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
511, 50syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ OL)
524, 18, 29olj02 35003 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) → ((0.‘𝐾) (𝑋 𝑌)) = (𝑋 𝑌))
5351, 14, 52syl2anc 575 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ((0.‘𝐾) (𝑋 𝑌)) = (𝑋 𝑌))
5449, 53eqtr2d 2840 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) = (𝑋 (𝑃 𝑄)))
5554ex 399 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑃 𝑄) → (𝑋 𝑌) = (𝑋 (𝑃 𝑄))))
56 simp11 1253 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ HL)
5756hllatd 35141 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ Lat)
58 simp12 1254 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑋𝑁)
5958, 6syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑋 ∈ (Base‘𝐾))
60 simp21 1256 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑃𝐴)
61 simp22 1257 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑄𝐴)
624, 18, 19hlatjcl 35144 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
6356, 60, 61, 62syl3anc 1483 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
644, 15, 12latmle2 17278 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑋 (𝑃 𝑄)) (𝑃 𝑄))
6557, 59, 63, 64syl3anc 1483 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 (𝑃 𝑄)) (𝑃 𝑄))
66 breq1 4843 . . 3 ((𝑋 𝑌) = (𝑋 (𝑃 𝑄)) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑋 (𝑃 𝑄)) (𝑃 𝑄)))
6765, 66syl5ibrcom 238 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) = (𝑋 (𝑃 𝑄)) → (𝑋 𝑌) (𝑃 𝑄)))
6855, 67impbid 203 1 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑋 𝑌) = (𝑋 (𝑃 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2158  wne 2977   class class class wbr 4840  cfv 6098  (class class class)co 6871  Basecbs 16064  lecple 16156  joincjn 17145  meetcmee 17146  0.cp0 17238  Latclat 17246  OLcol 34951  Atomscatm 35040  AtLatcal 35041  CvLatclc 35042  HLchlt 35127  LLinesclln 35268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-ral 3100  df-rex 3101  df-reu 3102  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4627  df-iun 4710  df-iin 4711  df-br 4841  df-opab 4903  df-mpt 4920  df-id 5216  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-1st 7395  df-2nd 7396  df-proset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-lat 17247  df-clat 17309  df-oposet 34953  df-ol 34955  df-oml 34956  df-covers 35043  df-ats 35044  df-atl 35075  df-cvlat 35099  df-hlat 35128  df-llines 35275  df-psubsp 35280  df-pmap 35281  df-padd 35573
This theorem is referenced by:  llnexchb2  35646
  Copyright terms: Public domain W3C validator