Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2lem Structured version   Visualization version   GIF version

Theorem llnexchb2lem 38331
Description: Lemma for llnexchb2 38332. (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l = (le‘𝐾)
llnexch.j = (join‘𝐾)
llnexch.m = (meet‘𝐾)
llnexch.a 𝐴 = (Atoms‘𝐾)
llnexch.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnexchb2lem (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑋 𝑌) = (𝑋 (𝑃 𝑄))))

Proof of Theorem llnexchb2lem
StepHypRef Expression
1 simpl11 1248 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ HL)
2 simpl21 1251 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑃𝐴)
3 simpl12 1249 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑋𝑁)
4 eqid 2736 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
5 llnexch.n . . . . . . . 8 𝑁 = (LLines‘𝐾)
64, 5llnbase 37972 . . . . . . 7 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
73, 6syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑋 ∈ (Base‘𝐾))
81hllatd 37826 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ Lat)
9 simpl13 1250 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑌𝑁)
104, 5llnbase 37972 . . . . . . . 8 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
119, 10syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑌 ∈ (Base‘𝐾))
12 llnexch.m . . . . . . . 8 = (meet‘𝐾)
134, 12latmcl 18329 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
148, 7, 11, 13syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) ∈ (Base‘𝐾))
15 llnexch.l . . . . . . . 8 = (le‘𝐾)
164, 15, 12latmle1 18353 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) 𝑋)
178, 7, 11, 16syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) 𝑋)
18 llnexch.j . . . . . . 7 = (join‘𝐾)
19 llnexch.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
204, 15, 18, 12, 19atmod2i2 38325 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ (𝑋 𝑌) 𝑋) → ((𝑋 𝑃) (𝑋 𝑌)) = (𝑋 (𝑃 (𝑋 𝑌))))
211, 2, 7, 14, 17, 20syl131anc 1383 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ((𝑋 𝑃) (𝑋 𝑌)) = (𝑋 (𝑃 (𝑋 𝑌))))
224, 19atbase 37751 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
232, 22syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑃 ∈ (Base‘𝐾))
244, 12latmcom 18352 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑋 𝑃) = (𝑃 𝑋))
258, 7, 23, 24syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑃) = (𝑃 𝑋))
26 simpl23 1253 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ¬ 𝑃 𝑋)
27 hlatl 37822 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
281, 27syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ AtLat)
29 eqid 2736 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
304, 15, 12, 29, 19atnle 37779 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋 ∈ (Base‘𝐾)) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = (0.‘𝐾)))
3128, 2, 7, 30syl3anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = (0.‘𝐾)))
3226, 31mpbid 231 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑃 𝑋) = (0.‘𝐾))
3325, 32eqtrd 2776 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑃) = (0.‘𝐾))
3433oveq1d 7372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ((𝑋 𝑃) (𝑋 𝑌)) = ((0.‘𝐾) (𝑋 𝑌)))
35 simpr 485 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) (𝑃 𝑄))
36 hlcvl 37821 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
371, 36syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ CvLat)
38 simpl3 1193 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) ∈ 𝐴)
39 simpl22 1252 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑄𝐴)
40 breq1 5108 . . . . . . . . . . . 12 (𝑃 = (𝑋 𝑌) → (𝑃 𝑋 ↔ (𝑋 𝑌) 𝑋))
4117, 40syl5ibrcom 246 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑃 = (𝑋 𝑌) → 𝑃 𝑋))
4241necon3bd 2957 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (¬ 𝑃 𝑋𝑃 ≠ (𝑋 𝑌)))
4326, 42mpd 15 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝑃 ≠ (𝑋 𝑌))
4443necomd 2999 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) ≠ 𝑃)
4515, 18, 19cvlatexchb1 37796 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ ((𝑋 𝑌) ∈ 𝐴𝑄𝐴𝑃𝐴) ∧ (𝑋 𝑌) ≠ 𝑃) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑃 (𝑋 𝑌)) = (𝑃 𝑄)))
4637, 38, 39, 2, 44, 45syl131anc 1383 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑃 (𝑋 𝑌)) = (𝑃 𝑄)))
4735, 46mpbid 231 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑃 (𝑋 𝑌)) = (𝑃 𝑄))
4847oveq2d 7373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 (𝑃 (𝑋 𝑌))) = (𝑋 (𝑃 𝑄)))
4921, 34, 483eqtr3rd 2785 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 (𝑃 𝑄)) = ((0.‘𝐾) (𝑋 𝑌)))
50 hlol 37823 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
511, 50syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → 𝐾 ∈ OL)
524, 18, 29olj02 37688 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) → ((0.‘𝐾) (𝑋 𝑌)) = (𝑋 𝑌))
5351, 14, 52syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → ((0.‘𝐾) (𝑋 𝑌)) = (𝑋 𝑌))
5449, 53eqtr2d 2777 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) ∧ (𝑋 𝑌) (𝑃 𝑄)) → (𝑋 𝑌) = (𝑋 (𝑃 𝑄)))
5554ex 413 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑃 𝑄) → (𝑋 𝑌) = (𝑋 (𝑃 𝑄))))
56 simp11 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ HL)
5756hllatd 37826 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ Lat)
58 simp12 1204 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑋𝑁)
5958, 6syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑋 ∈ (Base‘𝐾))
60 simp21 1206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑃𝐴)
61 simp22 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑄𝐴)
624, 18, 19hlatjcl 37829 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
6356, 60, 61, 62syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
644, 15, 12latmle2 18354 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑋 (𝑃 𝑄)) (𝑃 𝑄))
6557, 59, 63, 64syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 (𝑃 𝑄)) (𝑃 𝑄))
66 breq1 5108 . . 3 ((𝑋 𝑌) = (𝑋 (𝑃 𝑄)) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑋 (𝑃 𝑄)) (𝑃 𝑄)))
6765, 66syl5ibrcom 246 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) = (𝑋 (𝑃 𝑄)) → (𝑋 𝑌) (𝑃 𝑄)))
6855, 67impbid 211 1 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑋 𝑌) = (𝑋 (𝑃 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  meetcmee 18201  0.cp0 18312  Latclat 18320  OLcol 37636  Atomscatm 37725  AtLatcal 37726  CvLatclc 37727  HLchlt 37812  LLinesclln 37954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-psubsp 37966  df-pmap 37967  df-padd 38259
This theorem is referenced by:  llnexchb2  38332
  Copyright terms: Public domain W3C validator