| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatexch1 | Structured version Visualization version GIF version | ||
| Description: Atom exchange property. (Contributed by NM, 7-Jan-2012.) |
| Ref | Expression |
|---|---|
| hlatexchb.l | ⊢ ≤ = (le‘𝐾) |
| hlatexchb.j | ⊢ ∨ = (join‘𝐾) |
| hlatexchb.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatexch1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcvl 39468 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
| 2 | hlatexchb.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | hlatexchb.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | hlatexchb.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 2, 3, 4 | cvlatexch1 39445 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) |
| 6 | 1, 5 | syl3an1 1163 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 lecple 17178 joincjn 18227 Atomscatm 39372 CvLatclc 39374 HLchlt 39459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-proset 18210 df-poset 18229 df-plt 18244 df-lub 18260 df-glb 18261 df-join 18262 df-meet 18263 df-p0 18339 df-lat 18348 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 |
| This theorem is referenced by: exatleN 39513 3noncolr2 39558 4noncolr3 39562 3atlem4 39595 3atlem6 39597 4atlem0ae 39703 dalem3 39773 dalem5 39776 dalem-cly 39780 dalem28 39809 cdlema1N 39900 cdlemblem 39902 paddasslem2 39930 pmodlem1 39955 osumcllem6N 40070 pexmidlem3N 40081 trlval4 40297 cdlemd3 40309 cdleme3h 40344 cdleme7aa 40351 cdleme11j 40376 cdleme15b 40384 cdlemg27b 40805 |
| Copyright terms: Public domain | W3C validator |