![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatexch1 | Structured version Visualization version GIF version |
Description: Atom exchange property. (Contributed by NM, 7-Jan-2012.) |
Ref | Expression |
---|---|
hlatexchb.l | ⊢ ≤ = (le‘𝐾) |
hlatexchb.j | ⊢ ∨ = (join‘𝐾) |
hlatexchb.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatexch1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 39315 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | hlatexchb.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | hlatexchb.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | hlatexchb.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 2, 3, 4 | cvlatexch1 39292 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) |
6 | 1, 5 | syl3an1 1163 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 lecple 17318 joincjn 18381 Atomscatm 39219 CvLatclc 39221 HLchlt 39306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-lat 18502 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 |
This theorem is referenced by: exatleN 39361 3noncolr2 39406 4noncolr3 39410 3atlem4 39443 3atlem6 39445 4atlem0ae 39551 dalem3 39621 dalem5 39624 dalem-cly 39628 dalem28 39657 cdlema1N 39748 cdlemblem 39750 paddasslem2 39778 pmodlem1 39803 osumcllem6N 39918 pexmidlem3N 39929 trlval4 40145 cdlemd3 40157 cdleme3h 40192 cdleme7aa 40199 cdleme11j 40224 cdleme15b 40232 cdlemg27b 40653 |
Copyright terms: Public domain | W3C validator |