| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatexch1 | Structured version Visualization version GIF version | ||
| Description: Atom exchange property. (Contributed by NM, 7-Jan-2012.) |
| Ref | Expression |
|---|---|
| hlatexchb.l | ⊢ ≤ = (le‘𝐾) |
| hlatexchb.j | ⊢ ∨ = (join‘𝐾) |
| hlatexchb.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatexch1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcvl 39323 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
| 2 | hlatexchb.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | hlatexchb.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | hlatexchb.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 2, 3, 4 | cvlatexch1 39300 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) |
| 6 | 1, 5 | syl3an1 1163 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 lecple 17276 joincjn 18321 Atomscatm 39227 CvLatclc 39229 HLchlt 39314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-p0 18433 df-lat 18440 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 |
| This theorem is referenced by: exatleN 39369 3noncolr2 39414 4noncolr3 39418 3atlem4 39451 3atlem6 39453 4atlem0ae 39559 dalem3 39629 dalem5 39632 dalem-cly 39636 dalem28 39665 cdlema1N 39756 cdlemblem 39758 paddasslem2 39786 pmodlem1 39811 osumcllem6N 39926 pexmidlem3N 39937 trlval4 40153 cdlemd3 40165 cdleme3h 40200 cdleme7aa 40207 cdleme11j 40232 cdleme15b 40240 cdlemg27b 40661 |
| Copyright terms: Public domain | W3C validator |