![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatexch1 | Structured version Visualization version GIF version |
Description: Atom exchange property. (Contributed by NM, 7-Jan-2012.) |
Ref | Expression |
---|---|
hlatexchb.l | β’ β€ = (leβπΎ) |
hlatexchb.j | β’ β¨ = (joinβπΎ) |
hlatexchb.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
hlatexch1 | β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π) β π β€ (π β¨ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 38224 | . 2 β’ (πΎ β HL β πΎ β CvLat) | |
2 | hlatexchb.l | . . 3 β’ β€ = (leβπΎ) | |
3 | hlatexchb.j | . . 3 β’ β¨ = (joinβπΎ) | |
4 | hlatexchb.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
5 | 2, 3, 4 | cvlatexch1 38201 | . 2 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π) β π β€ (π β¨ π))) |
6 | 1, 5 | syl3an1 1163 | 1 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π) β π β€ (π β¨ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 class class class wbr 5148 βcfv 6543 (class class class)co 7408 lecple 17203 joincjn 18263 Atomscatm 38128 CvLatclc 38130 HLchlt 38215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-lat 18384 df-covers 38131 df-ats 38132 df-atl 38163 df-cvlat 38187 df-hlat 38216 |
This theorem is referenced by: exatleN 38270 3noncolr2 38315 4noncolr3 38319 3atlem4 38352 3atlem6 38354 4atlem0ae 38460 dalem3 38530 dalem5 38533 dalem-cly 38537 dalem28 38566 cdlema1N 38657 cdlemblem 38659 paddasslem2 38687 pmodlem1 38712 osumcllem6N 38827 pexmidlem3N 38838 trlval4 39054 cdlemd3 39066 cdleme3h 39101 cdleme7aa 39108 cdleme11j 39133 cdleme15b 39141 cdlemg27b 39562 |
Copyright terms: Public domain | W3C validator |