Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme19a Structured version   Visualization version   GIF version

Theorem cdleme19a 40297
Description: Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, 1st line. 𝐷 represents s2. In their notation, we prove that if r s t, then s2=(s t) w. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l = (le‘𝐾)
cdleme19.j = (join‘𝐾)
cdleme19.m = (meet‘𝐾)
cdleme19.a 𝐴 = (Atoms‘𝐾)
cdleme19.h 𝐻 = (LHyp‘𝐾)
cdleme19.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme19.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme19.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme19.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdleme19.y 𝑌 = ((𝑅 𝑇) 𝑊)
Assertion
Ref Expression
cdleme19a ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝐷 = ((𝑆 𝑇) 𝑊))

Proof of Theorem cdleme19a
StepHypRef Expression
1 cdleme19.d . 2 𝐷 = ((𝑅 𝑆) 𝑊)
2 eqid 2729 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 cdleme19.l . . . 4 = (le‘𝐾)
4 hllat 39356 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
543ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝐾 ∈ Lat)
6 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝐾 ∈ HL)
7 simp21 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑅𝐴)
8 simp22 1208 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑆𝐴)
9 cdleme19.j . . . . . 6 = (join‘𝐾)
10 cdleme19.a . . . . . 6 𝐴 = (Atoms‘𝐾)
112, 9, 10hlatjcl 39360 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
126, 7, 8, 11syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → (𝑅 𝑆) ∈ (Base‘𝐾))
13 simp23 1209 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑇𝐴)
142, 9, 10hlatjcl 39360 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
156, 8, 13, 14syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → (𝑆 𝑇) ∈ (Base‘𝐾))
16 simp33 1212 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑅 (𝑆 𝑇))
173, 9, 10hlatlej1 39368 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆 (𝑆 𝑇))
186, 8, 13, 17syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑆 (𝑆 𝑇))
192, 10atbase 39282 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
207, 19syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑅 ∈ (Base‘𝐾))
212, 10atbase 39282 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
228, 21syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑆 ∈ (Base‘𝐾))
232, 3, 9latjle12 18409 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾))) → ((𝑅 (𝑆 𝑇) ∧ 𝑆 (𝑆 𝑇)) ↔ (𝑅 𝑆) (𝑆 𝑇)))
245, 20, 22, 15, 23syl13anc 1374 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → ((𝑅 (𝑆 𝑇) ∧ 𝑆 (𝑆 𝑇)) ↔ (𝑅 𝑆) (𝑆 𝑇)))
2516, 18, 24mpbi2and 712 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → (𝑅 𝑆) (𝑆 𝑇))
263, 9, 10hlatlej2 39369 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → 𝑆 (𝑅 𝑆))
276, 7, 8, 26syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑆 (𝑅 𝑆))
28 hlcvl 39352 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
29283ad2ant1 1133 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝐾 ∈ CvLat)
30 simp31 1210 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑅 (𝑃 𝑄))
31 simp32 1211 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → ¬ 𝑆 (𝑃 𝑄))
32 nbrne2 5127 . . . . . . . . 9 ((𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑅𝑆)
3330, 31, 32syl2anc 584 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑅𝑆)
343, 9, 10cvlatexch1 39329 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑅𝐴𝑇𝐴𝑆𝐴) ∧ 𝑅𝑆) → (𝑅 (𝑆 𝑇) → 𝑇 (𝑆 𝑅)))
3529, 7, 13, 8, 33, 34syl131anc 1385 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → (𝑅 (𝑆 𝑇) → 𝑇 (𝑆 𝑅)))
3616, 35mpd 15 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑇 (𝑆 𝑅))
379, 10hlatjcom 39361 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) = (𝑆 𝑅))
386, 7, 8, 37syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → (𝑅 𝑆) = (𝑆 𝑅))
3936, 38breqtrrd 5135 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑇 (𝑅 𝑆))
402, 10atbase 39282 . . . . . . 7 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
4113, 40syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝑇 ∈ (Base‘𝐾))
422, 3, 9latjle12 18409 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾))) → ((𝑆 (𝑅 𝑆) ∧ 𝑇 (𝑅 𝑆)) ↔ (𝑆 𝑇) (𝑅 𝑆)))
435, 22, 41, 12, 42syl13anc 1374 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → ((𝑆 (𝑅 𝑆) ∧ 𝑇 (𝑅 𝑆)) ↔ (𝑆 𝑇) (𝑅 𝑆)))
4427, 39, 43mpbi2and 712 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → (𝑆 𝑇) (𝑅 𝑆))
452, 3, 5, 12, 15, 25, 44latasymd 18404 . . 3 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → (𝑅 𝑆) = (𝑆 𝑇))
4645oveq1d 7402 . 2 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → ((𝑅 𝑆) 𝑊) = ((𝑆 𝑇) 𝑊))
471, 46eqtrid 2776 1 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇))) → 𝐷 = ((𝑆 𝑇) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  CvLatclc 39258  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  cdleme19b  40298
  Copyright terms: Public domain W3C validator