Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme19a Structured version   Visualization version   GIF version

Theorem cdleme19a 38812
Description: Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, 1st line. 𝐷 represents s2. In their notation, we prove that if r ≀ s ∨ t, then s2=(s ∨ t) ∧ w. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l ≀ = (leβ€˜πΎ)
cdleme19.j ∨ = (joinβ€˜πΎ)
cdleme19.m ∧ = (meetβ€˜πΎ)
cdleme19.a 𝐴 = (Atomsβ€˜πΎ)
cdleme19.h 𝐻 = (LHypβ€˜πΎ)
cdleme19.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme19.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme19.g 𝐺 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
cdleme19.d 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
cdleme19.y π‘Œ = ((𝑅 ∨ 𝑇) ∧ π‘Š)
Assertion
Ref Expression
cdleme19a ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝐷 = ((𝑆 ∨ 𝑇) ∧ π‘Š))

Proof of Theorem cdleme19a
StepHypRef Expression
1 cdleme19.d . 2 𝐷 = ((𝑅 ∨ 𝑆) ∧ π‘Š)
2 eqid 2733 . . . 4 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
3 cdleme19.l . . . 4 ≀ = (leβ€˜πΎ)
4 hllat 37871 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
543ad2ant1 1134 . . . 4 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝐾 ∈ Lat)
6 simp1 1137 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝐾 ∈ HL)
7 simp21 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑅 ∈ 𝐴)
8 simp22 1208 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑆 ∈ 𝐴)
9 cdleme19.j . . . . . 6 ∨ = (joinβ€˜πΎ)
10 cdleme19.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
112, 9, 10hlatjcl 37875 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
126, 7, 8, 11syl3anc 1372 . . . 4 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
13 simp23 1209 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑇 ∈ 𝐴)
142, 9, 10hlatjcl 37875 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
156, 8, 13, 14syl3anc 1372 . . . 4 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
16 simp33 1212 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑅 ≀ (𝑆 ∨ 𝑇))
173, 9, 10hlatlej1 37883 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ 𝑆 ≀ (𝑆 ∨ 𝑇))
186, 8, 13, 17syl3anc 1372 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑆 ≀ (𝑆 ∨ 𝑇))
192, 10atbase 37797 . . . . . . 7 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
207, 19syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
212, 10atbase 37797 . . . . . . 7 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
228, 21syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
232, 3, 9latjle12 18344 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ) ∧ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))) β†’ ((𝑅 ≀ (𝑆 ∨ 𝑇) ∧ 𝑆 ≀ (𝑆 ∨ 𝑇)) ↔ (𝑅 ∨ 𝑆) ≀ (𝑆 ∨ 𝑇)))
245, 20, 22, 15, 23syl13anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑅 ≀ (𝑆 ∨ 𝑇) ∧ 𝑆 ≀ (𝑆 ∨ 𝑇)) ↔ (𝑅 ∨ 𝑆) ≀ (𝑆 ∨ 𝑇)))
2516, 18, 24mpbi2and 711 . . . 4 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ (𝑅 ∨ 𝑆) ≀ (𝑆 ∨ 𝑇))
263, 9, 10hlatlej2 37884 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑆 ≀ (𝑅 ∨ 𝑆))
276, 7, 8, 26syl3anc 1372 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑆 ≀ (𝑅 ∨ 𝑆))
28 hlcvl 37867 . . . . . . . . 9 (𝐾 ∈ HL β†’ 𝐾 ∈ CvLat)
29283ad2ant1 1134 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝐾 ∈ CvLat)
30 simp31 1210 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
31 simp32 1211 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
32 nbrne2 5126 . . . . . . . . 9 ((𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑅 β‰  𝑆)
3330, 31, 32syl2anc 585 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑅 β‰  𝑆)
343, 9, 10cvlatexch1 37844 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑅 β‰  𝑆) β†’ (𝑅 ≀ (𝑆 ∨ 𝑇) β†’ 𝑇 ≀ (𝑆 ∨ 𝑅)))
3529, 7, 13, 8, 33, 34syl131anc 1384 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ (𝑅 ≀ (𝑆 ∨ 𝑇) β†’ 𝑇 ≀ (𝑆 ∨ 𝑅)))
3616, 35mpd 15 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑇 ≀ (𝑆 ∨ 𝑅))
379, 10hlatjcom 37876 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) = (𝑆 ∨ 𝑅))
386, 7, 8, 37syl3anc 1372 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ (𝑅 ∨ 𝑆) = (𝑆 ∨ 𝑅))
3936, 38breqtrrd 5134 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑇 ≀ (𝑅 ∨ 𝑆))
402, 10atbase 37797 . . . . . . 7 (𝑇 ∈ 𝐴 β†’ 𝑇 ∈ (Baseβ€˜πΎ))
4113, 40syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝑇 ∈ (Baseβ€˜πΎ))
422, 3, 9latjle12 18344 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))) β†’ ((𝑆 ≀ (𝑅 ∨ 𝑆) ∧ 𝑇 ≀ (𝑅 ∨ 𝑆)) ↔ (𝑆 ∨ 𝑇) ≀ (𝑅 ∨ 𝑆)))
435, 22, 41, 12, 42syl13anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ≀ (𝑅 ∨ 𝑆) ∧ 𝑇 ≀ (𝑅 ∨ 𝑆)) ↔ (𝑆 ∨ 𝑇) ≀ (𝑅 ∨ 𝑆)))
4427, 39, 43mpbi2and 711 . . . 4 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ (𝑆 ∨ 𝑇) ≀ (𝑅 ∨ 𝑆))
452, 3, 5, 12, 15, 25, 44latasymd 18339 . . 3 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ (𝑅 ∨ 𝑆) = (𝑆 ∨ 𝑇))
4645oveq1d 7373 . 2 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) = ((𝑆 ∨ 𝑇) ∧ π‘Š))
471, 46eqtrid 2785 1 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ 𝑅 ≀ (𝑆 ∨ 𝑇))) β†’ 𝐷 = ((𝑆 ∨ 𝑇) ∧ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  lecple 17145  joincjn 18205  meetcmee 18206  Latclat 18325  Atomscatm 37771  CvLatclc 37773  HLchlt 37858  LHypclh 38493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-lat 18326  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859
This theorem is referenced by:  cdleme19b  38813
  Copyright terms: Public domain W3C validator