Proof of Theorem cdleme19a
Step | Hyp | Ref
| Expression |
1 | | cdleme19.d |
. 2
⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
2 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) |
3 | | cdleme19.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
4 | | hllat 37377 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
5 | 4 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝐾 ∈ Lat) |
6 | | simp1 1135 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝐾 ∈ HL) |
7 | | simp21 1205 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑅 ∈ 𝐴) |
8 | | simp22 1206 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑆 ∈ 𝐴) |
9 | | cdleme19.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
10 | | cdleme19.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
11 | 2, 9, 10 | hlatjcl 37381 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
12 | 6, 7, 8, 11 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
13 | | simp23 1207 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑇 ∈ 𝐴) |
14 | 2, 9, 10 | hlatjcl 37381 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
15 | 6, 8, 13, 14 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
16 | | simp33 1210 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑅 ≤ (𝑆 ∨ 𝑇)) |
17 | 3, 9, 10 | hlatlej1 37389 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → 𝑆 ≤ (𝑆 ∨ 𝑇)) |
18 | 6, 8, 13, 17 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑆 ≤ (𝑆 ∨ 𝑇)) |
19 | 2, 10 | atbase 37303 |
. . . . . . 7
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
20 | 7, 19 | syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑅 ∈ (Base‘𝐾)) |
21 | 2, 10 | atbase 37303 |
. . . . . . 7
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
22 | 8, 21 | syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑆 ∈ (Base‘𝐾)) |
23 | 2, 3, 9 | latjle12 18168 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾))) → ((𝑅 ≤ (𝑆 ∨ 𝑇) ∧ 𝑆 ≤ (𝑆 ∨ 𝑇)) ↔ (𝑅 ∨ 𝑆) ≤ (𝑆 ∨ 𝑇))) |
24 | 5, 20, 22, 15, 23 | syl13anc 1371 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → ((𝑅 ≤ (𝑆 ∨ 𝑇) ∧ 𝑆 ≤ (𝑆 ∨ 𝑇)) ↔ (𝑅 ∨ 𝑆) ≤ (𝑆 ∨ 𝑇))) |
25 | 16, 18, 24 | mpbi2and 709 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → (𝑅 ∨ 𝑆) ≤ (𝑆 ∨ 𝑇)) |
26 | 3, 9, 10 | hlatlej2 37390 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑆 ≤ (𝑅 ∨ 𝑆)) |
27 | 6, 7, 8, 26 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑆 ≤ (𝑅 ∨ 𝑆)) |
28 | | hlcvl 37373 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
29 | 28 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝐾 ∈ CvLat) |
30 | | simp31 1208 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
31 | | simp32 1209 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
32 | | nbrne2 5094 |
. . . . . . . . 9
⊢ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑅 ≠ 𝑆) |
33 | 30, 31, 32 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑅 ≠ 𝑆) |
34 | 3, 9, 10 | cvlatexch1 37350 |
. . . . . . . 8
⊢ ((𝐾 ∈ CvLat ∧ (𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑅 ≠ 𝑆) → (𝑅 ≤ (𝑆 ∨ 𝑇) → 𝑇 ≤ (𝑆 ∨ 𝑅))) |
35 | 29, 7, 13, 8, 33, 34 | syl131anc 1382 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → (𝑅 ≤ (𝑆 ∨ 𝑇) → 𝑇 ≤ (𝑆 ∨ 𝑅))) |
36 | 16, 35 | mpd 15 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑇 ≤ (𝑆 ∨ 𝑅)) |
37 | 9, 10 | hlatjcom 37382 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) = (𝑆 ∨ 𝑅)) |
38 | 6, 7, 8, 37 | syl3anc 1370 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → (𝑅 ∨ 𝑆) = (𝑆 ∨ 𝑅)) |
39 | 36, 38 | breqtrrd 5102 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑇 ≤ (𝑅 ∨ 𝑆)) |
40 | 2, 10 | atbase 37303 |
. . . . . . 7
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
41 | 13, 40 | syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝑇 ∈ (Base‘𝐾)) |
42 | 2, 3, 9 | latjle12 18168 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑆 ≤ (𝑅 ∨ 𝑆) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆)) ↔ (𝑆 ∨ 𝑇) ≤ (𝑅 ∨ 𝑆))) |
43 | 5, 22, 41, 12, 42 | syl13anc 1371 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → ((𝑆 ≤ (𝑅 ∨ 𝑆) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆)) ↔ (𝑆 ∨ 𝑇) ≤ (𝑅 ∨ 𝑆))) |
44 | 27, 39, 43 | mpbi2and 709 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → (𝑆 ∨ 𝑇) ≤ (𝑅 ∨ 𝑆)) |
45 | 2, 3, 5, 12, 15, 25, 44 | latasymd 18163 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → (𝑅 ∨ 𝑆) = (𝑆 ∨ 𝑇)) |
46 | 45 | oveq1d 7290 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → ((𝑅 ∨ 𝑆) ∧ 𝑊) = ((𝑆 ∨ 𝑇) ∧ 𝑊)) |
47 | 1, 46 | eqtrid 2790 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑆 ∨ 𝑇))) → 𝐷 = ((𝑆 ∨ 𝑇) ∧ 𝑊)) |