Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20zN Structured version   Visualization version   GIF version

Theorem cdleme20zN 38764
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 17-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme20z.l = (le‘𝐾)
cdleme20z.j = (join‘𝐾)
cdleme20z.m = (meet‘𝐾)
cdleme20z.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdleme20zN ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → ((𝑆 𝑅) 𝑇) = (0.‘𝐾))

Proof of Theorem cdleme20zN
StepHypRef Expression
1 hllat 37825 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1133 . . 3 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → 𝐾 ∈ Lat)
3 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → 𝐾 ∈ HL)
4 simp22 1207 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → 𝑆𝐴)
5 simp21 1206 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → 𝑅𝐴)
6 eqid 2736 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
7 cdleme20z.j . . . . 5 = (join‘𝐾)
8 cdleme20z.a . . . . 5 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 37829 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑅𝐴) → (𝑆 𝑅) ∈ (Base‘𝐾))
103, 4, 5, 9syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → (𝑆 𝑅) ∈ (Base‘𝐾))
11 simp23 1208 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → 𝑇𝐴)
126, 8atbase 37751 . . . 4 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
1311, 12syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → 𝑇 ∈ (Base‘𝐾))
14 cdleme20z.m . . . 4 = (meet‘𝐾)
156, 14latmcom 18352 . . 3 ((𝐾 ∈ Lat ∧ (𝑆 𝑅) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑆 𝑅) 𝑇) = (𝑇 (𝑆 𝑅)))
162, 10, 13, 15syl3anc 1371 . 2 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → ((𝑆 𝑅) 𝑇) = (𝑇 (𝑆 𝑅)))
17 simp3r 1202 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → ¬ 𝑅 (𝑆 𝑇))
18 hlcvl 37821 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
19183ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → 𝐾 ∈ CvLat)
20 simp3l 1201 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → 𝑆𝑇)
2120necomd 2999 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → 𝑇𝑆)
22 cdleme20z.l . . . . . 6 = (le‘𝐾)
2322, 7, 8cvlatexch1 37798 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑇𝐴𝑅𝐴𝑆𝐴) ∧ 𝑇𝑆) → (𝑇 (𝑆 𝑅) → 𝑅 (𝑆 𝑇)))
2419, 11, 5, 4, 21, 23syl131anc 1383 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → (𝑇 (𝑆 𝑅) → 𝑅 (𝑆 𝑇)))
2517, 24mtod 197 . . 3 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → ¬ 𝑇 (𝑆 𝑅))
26 hlatl 37822 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
27263ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → 𝐾 ∈ AtLat)
28 eqid 2736 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
296, 22, 14, 28, 8atnle 37779 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑇𝐴 ∧ (𝑆 𝑅) ∈ (Base‘𝐾)) → (¬ 𝑇 (𝑆 𝑅) ↔ (𝑇 (𝑆 𝑅)) = (0.‘𝐾)))
3027, 11, 10, 29syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → (¬ 𝑇 (𝑆 𝑅) ↔ (𝑇 (𝑆 𝑅)) = (0.‘𝐾)))
3125, 30mpbid 231 . 2 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → (𝑇 (𝑆 𝑅)) = (0.‘𝐾))
3216, 31eqtrd 2776 1 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑅 (𝑆 𝑇))) → ((𝑆 𝑅) 𝑇) = (0.‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  meetcmee 18201  0.cp0 18312  Latclat 18320  Atomscatm 37725  AtLatcal 37726  CvLatclc 37727  HLchlt 37812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator