Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21b Structured version   Visualization version   GIF version

Theorem cdleme21b 37928
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 28-Nov-2012.)
Hypotheses
Ref Expression
cdleme21a.l = (le‘𝐾)
cdleme21a.j = (join‘𝐾)
cdleme21a.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdleme21b (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑧 (𝑃 𝑄))

Proof of Theorem cdleme21b
StepHypRef Expression
1 simp23 1205 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑆 (𝑃 𝑄))
2 simp11 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝐾 ∈ HL)
3 hlcvl 36961 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
42, 3syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝐾 ∈ CvLat)
5 simp3l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑧𝐴)
6 simp13 1202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑄𝐴)
7 simp12 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑃𝐴)
8 simp21 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑆𝐴)
9 cdleme21a.l . . . . . . . . 9 = (le‘𝐾)
10 cdleme21a.j . . . . . . . . 9 = (join‘𝐾)
11 cdleme21a.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
129, 10, 11atnlej1 36981 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝑃)
1312necomd 3006 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝑆)
142, 8, 7, 6, 1, 13syl131anc 1380 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑃𝑆)
15 simp3r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑧) = (𝑆 𝑧))
1611, 10cvlsupr5 36948 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑆𝐴𝑧𝐴) ∧ (𝑃𝑆 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑧𝑃)
174, 7, 8, 5, 14, 15, 16syl132anc 1385 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑧𝑃)
189, 10, 11cvlatexch1 36938 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑧𝐴𝑄𝐴𝑃𝐴) ∧ 𝑧𝑃) → (𝑧 (𝑃 𝑄) → 𝑄 (𝑃 𝑧)))
194, 5, 6, 7, 17, 18syl131anc 1380 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑧 (𝑃 𝑄) → 𝑄 (𝑃 𝑧)))
2011, 10cvlsupr8 36951 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑆𝐴𝑧𝐴) ∧ (𝑃𝑆 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑆) = (𝑃 𝑧))
214, 7, 8, 5, 14, 15, 20syl132anc 1385 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑆) = (𝑃 𝑧))
2221breq2d 5047 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑄 (𝑃 𝑆) ↔ 𝑄 (𝑃 𝑧)))
2319, 22sylibrd 262 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑧 (𝑃 𝑄) → 𝑄 (𝑃 𝑆)))
24 simp22 1204 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑃𝑄)
2524necomd 3006 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑄𝑃)
269, 10, 11cvlatexch1 36938 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑄𝐴𝑆𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑆) → 𝑆 (𝑃 𝑄)))
274, 6, 8, 7, 25, 26syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑄 (𝑃 𝑆) → 𝑆 (𝑃 𝑄)))
2823, 27syld 47 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑧 (𝑃 𝑄) → 𝑆 (𝑃 𝑄)))
291, 28mtod 201 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑧 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951   class class class wbr 5035  cfv 6339  (class class class)co 7155  lecple 16635  joincjn 17625  Atomscatm 36865  CvLatclc 36867  HLchlt 36952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-proset 17609  df-poset 17627  df-plt 17639  df-lub 17655  df-glb 17656  df-join 17657  df-meet 17658  df-p0 17720  df-lat 17727  df-covers 36868  df-ats 36869  df-atl 36900  df-cvlat 36924  df-hlat 36953
This theorem is referenced by:  cdleme21d  37932  cdleme21e  37933
  Copyright terms: Public domain W3C validator