Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartimp Structured version   Visualization version   GIF version

Theorem iccpartimp 44909
Description: Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.)
Assertion
Ref Expression
iccpartimp ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))

Proof of Theorem iccpartimp
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpart 44908 . . 3 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
2 fveq2 6792 . . . . . . 7 (𝑖 = 𝐼 → (𝑃𝑖) = (𝑃𝐼))
3 fvoveq1 7318 . . . . . . 7 (𝑖 = 𝐼 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝐼 + 1)))
42, 3breq12d 5090 . . . . . 6 (𝑖 = 𝐼 → ((𝑃𝑖) < (𝑃‘(𝑖 + 1)) ↔ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
54rspccv 3560 . . . . 5 (∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)) → (𝐼 ∈ (0..^𝑀) → (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
65adantl 481 . . . 4 ((𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
7 simpl 482 . . . 4 ((𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))) → 𝑃 ∈ (ℝ*m (0...𝑀)))
86, 7jctild 525 . . 3 ((𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1)))))
91, 8syl6bi 252 . 2 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))))
1093imp 1109 1 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1537  wcel 2101  wral 3059   class class class wbr 5077  cfv 6447  (class class class)co 7295  m cmap 8635  0cc0 10899  1c1 10900   + caddc 10902  *cxr 11036   < clt 11037  cn 12001  ...cfz 13267  ..^cfzo 13410  RePartciccp 44905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-iota 6399  df-fun 6449  df-fv 6455  df-ov 7298  df-iccp 44906
This theorem is referenced by:  iccpartgtprec  44912  iccpartipre  44913  iccpartiltu  44914  iccpartigtl  44915  iccpartlt  44916  iccpartgt  44919
  Copyright terms: Public domain W3C validator