Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartimp Structured version   Visualization version   GIF version

Theorem iccpartimp 47431
Description: Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.)
Assertion
Ref Expression
iccpartimp ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))

Proof of Theorem iccpartimp
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpart 47430 . . 3 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
2 fveq2 6876 . . . . . . 7 (𝑖 = 𝐼 → (𝑃𝑖) = (𝑃𝐼))
3 fvoveq1 7428 . . . . . . 7 (𝑖 = 𝐼 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝐼 + 1)))
42, 3breq12d 5132 . . . . . 6 (𝑖 = 𝐼 → ((𝑃𝑖) < (𝑃‘(𝑖 + 1)) ↔ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
54rspccv 3598 . . . . 5 (∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)) → (𝐼 ∈ (0..^𝑀) → (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
65adantl 481 . . . 4 ((𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
7 simpl 482 . . . 4 ((𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))) → 𝑃 ∈ (ℝ*m (0...𝑀)))
86, 7jctild 525 . . 3 ((𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1)))))
91, 8biimtrdi 253 . 2 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))))
1093imp 1110 1 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  cfv 6531  (class class class)co 7405  m cmap 8840  0cc0 11129  1c1 11130   + caddc 11132  *cxr 11268   < clt 11269  cn 12240  ...cfz 13524  ..^cfzo 13671  RePartciccp 47427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-iccp 47428
This theorem is referenced by:  iccpartgtprec  47434  iccpartipre  47435  iccpartiltu  47436  iccpartigtl  47437  iccpartlt  47438  iccpartgt  47441
  Copyright terms: Public domain W3C validator