Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartimp Structured version   Visualization version   GIF version

Theorem iccpartimp 47418
Description: Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.)
Assertion
Ref Expression
iccpartimp ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))

Proof of Theorem iccpartimp
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpart 47417 . . 3 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
2 fveq2 6858 . . . . . . 7 (𝑖 = 𝐼 → (𝑃𝑖) = (𝑃𝐼))
3 fvoveq1 7410 . . . . . . 7 (𝑖 = 𝐼 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝐼 + 1)))
42, 3breq12d 5120 . . . . . 6 (𝑖 = 𝐼 → ((𝑃𝑖) < (𝑃‘(𝑖 + 1)) ↔ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
54rspccv 3585 . . . . 5 (∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)) → (𝐼 ∈ (0..^𝑀) → (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
65adantl 481 . . . 4 ((𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
7 simpl 482 . . . 4 ((𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))) → 𝑃 ∈ (ℝ*m (0...𝑀)))
86, 7jctild 525 . . 3 ((𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1)))))
91, 8biimtrdi 253 . 2 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))))
1093imp 1110 1 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068  1c1 11069   + caddc 11071  *cxr 11207   < clt 11208  cn 12186  ...cfz 13468  ..^cfzo 13615  RePartciccp 47414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-iccp 47415
This theorem is referenced by:  iccpartgtprec  47421  iccpartipre  47422  iccpartiltu  47423  iccpartigtl  47424  iccpartlt  47425  iccpartgt  47428
  Copyright terms: Public domain W3C validator