Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartimp | Structured version Visualization version GIF version |
Description: Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.) |
Ref | Expression |
---|---|
iccpartimp | ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpart 44756 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | |
2 | fveq2 6756 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑃‘𝑖) = (𝑃‘𝐼)) | |
3 | fvoveq1 7278 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝐼 + 1))) | |
4 | 2, 3 | breq12d 5083 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ((𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) ↔ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
5 | 4 | rspccv 3549 | . . . . 5 ⊢ (∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) → (𝐼 ∈ (0..^𝑀) → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
7 | simpl 482 | . . . 4 ⊢ ((𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → 𝑃 ∈ (ℝ* ↑m (0...𝑀))) | |
8 | 6, 7 | jctild 525 | . . 3 ⊢ ((𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1))))) |
9 | 1, 8 | syl6bi 252 | . 2 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))))) |
10 | 9 | 3imp 1109 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 0cc0 10802 1c1 10803 + caddc 10805 ℝ*cxr 10939 < clt 10940 ℕcn 11903 ...cfz 13168 ..^cfzo 13311 RePartciccp 44753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-iccp 44754 |
This theorem is referenced by: iccpartgtprec 44760 iccpartipre 44761 iccpartiltu 44762 iccpartigtl 44763 iccpartlt 44764 iccpartgt 44767 |
Copyright terms: Public domain | W3C validator |