Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartimp | Structured version Visualization version GIF version |
Description: Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.) |
Ref | Expression |
---|---|
iccpartimp | ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpart 44908 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | |
2 | fveq2 6792 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑃‘𝑖) = (𝑃‘𝐼)) | |
3 | fvoveq1 7318 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝐼 + 1))) | |
4 | 2, 3 | breq12d 5090 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ((𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) ↔ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
5 | 4 | rspccv 3560 | . . . . 5 ⊢ (∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) → (𝐼 ∈ (0..^𝑀) → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
7 | simpl 482 | . . . 4 ⊢ ((𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → 𝑃 ∈ (ℝ* ↑m (0...𝑀))) | |
8 | 6, 7 | jctild 525 | . . 3 ⊢ ((𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1))))) |
9 | 1, 8 | syl6bi 252 | . 2 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))))) |
10 | 9 | 3imp 1109 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ∀wral 3059 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 ↑m cmap 8635 0cc0 10899 1c1 10900 + caddc 10902 ℝ*cxr 11036 < clt 11037 ℕcn 12001 ...cfz 13267 ..^cfzo 13410 RePartciccp 44905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-iota 6399 df-fun 6449 df-fv 6455 df-ov 7298 df-iccp 44906 |
This theorem is referenced by: iccpartgtprec 44912 iccpartipre 44913 iccpartiltu 44914 iccpartigtl 44915 iccpartlt 44916 iccpartgt 44919 |
Copyright terms: Public domain | W3C validator |