![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartimp | Structured version Visualization version GIF version |
Description: Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.) |
Ref | Expression |
---|---|
iccpartimp | β’ ((π β β β§ π β (RePartβπ) β§ πΌ β (0..^π)) β (π β (β* βm (0...π)) β§ (πβπΌ) < (πβ(πΌ + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpart 46074 | . . 3 β’ (π β β β (π β (RePartβπ) β (π β (β* βm (0...π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1))))) | |
2 | fveq2 6891 | . . . . . . 7 β’ (π = πΌ β (πβπ) = (πβπΌ)) | |
3 | fvoveq1 7431 | . . . . . . 7 β’ (π = πΌ β (πβ(π + 1)) = (πβ(πΌ + 1))) | |
4 | 2, 3 | breq12d 5161 | . . . . . 6 β’ (π = πΌ β ((πβπ) < (πβ(π + 1)) β (πβπΌ) < (πβ(πΌ + 1)))) |
5 | 4 | rspccv 3609 | . . . . 5 β’ (βπ β (0..^π)(πβπ) < (πβ(π + 1)) β (πΌ β (0..^π) β (πβπΌ) < (πβ(πΌ + 1)))) |
6 | 5 | adantl 482 | . . . 4 β’ ((π β (β* βm (0...π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1))) β (πΌ β (0..^π) β (πβπΌ) < (πβ(πΌ + 1)))) |
7 | simpl 483 | . . . 4 β’ ((π β (β* βm (0...π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1))) β π β (β* βm (0...π))) | |
8 | 6, 7 | jctild 526 | . . 3 β’ ((π β (β* βm (0...π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1))) β (πΌ β (0..^π) β (π β (β* βm (0...π)) β§ (πβπΌ) < (πβ(πΌ + 1))))) |
9 | 1, 8 | syl6bi 252 | . 2 β’ (π β β β (π β (RePartβπ) β (πΌ β (0..^π) β (π β (β* βm (0...π)) β§ (πβπΌ) < (πβ(πΌ + 1)))))) |
10 | 9 | 3imp 1111 | 1 β’ ((π β β β§ π β (RePartβπ) β§ πΌ β (0..^π)) β (π β (β* βm (0...π)) β§ (πβπΌ) < (πβ(πΌ + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5148 βcfv 6543 (class class class)co 7408 βm cmap 8819 0cc0 11109 1c1 11110 + caddc 11112 β*cxr 11246 < clt 11247 βcn 12211 ...cfz 13483 ..^cfzo 13626 RePartciccp 46071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-iccp 46072 |
This theorem is referenced by: iccpartgtprec 46078 iccpartipre 46079 iccpartiltu 46080 iccpartigtl 46081 iccpartlt 46082 iccpartgt 46085 |
Copyright terms: Public domain | W3C validator |