| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartimp | Structured version Visualization version GIF version | ||
| Description: Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpartimp | ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpart 47390 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | |
| 2 | fveq2 6840 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑃‘𝑖) = (𝑃‘𝐼)) | |
| 3 | fvoveq1 7392 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝐼 + 1))) | |
| 4 | 2, 3 | breq12d 5115 | . . . . . 6 ⊢ (𝑖 = 𝐼 → ((𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) ↔ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
| 5 | 4 | rspccv 3582 | . . . . 5 ⊢ (∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) → (𝐼 ∈ (0..^𝑀) → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
| 7 | simpl 482 | . . . 4 ⊢ ((𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → 𝑃 ∈ (ℝ* ↑m (0...𝑀))) | |
| 8 | 6, 7 | jctild 525 | . . 3 ⊢ ((𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1))))) |
| 9 | 1, 8 | biimtrdi 253 | . 2 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))))) |
| 10 | 9 | 3imp 1110 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 0cc0 11044 1c1 11045 + caddc 11047 ℝ*cxr 11183 < clt 11184 ℕcn 12162 ...cfz 13444 ..^cfzo 13591 RePartciccp 47387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-iccp 47388 |
| This theorem is referenced by: iccpartgtprec 47394 iccpartipre 47395 iccpartiltu 47396 iccpartigtl 47397 iccpartlt 47398 iccpartgt 47401 |
| Copyright terms: Public domain | W3C validator |